【ACWing】291. 蒙德里安的梦想

题目地址:

https://www.acwing.com/problem/content/description/293/

给定一个 N × M N\times M N×M的网格,有无限个 1 × 2 1\times 2 1×2的骨牌,问将这些骨牌排满这个网格有多少个不同方案。

输入格式:
输入包含多组测试用例。每组测试用例占一行,包含两个整数 N N N M M M。当输入用例 N = 0 N=0 N=0 M = 0 M=0 M=0时,表示输入终止,且该用例无需处理。

输出格式:
每个测试用例输出一个结果,每个结果占一行。

数据范围:
1 ≤ N , M ≤ 11 1\le N,M\le 11 1N,M11

思路是动态规划。我们可以只枚举 1 × 2 1\times 2 1×2的骨牌横着放的方式,只要横着放的骨牌都确定了,剩余的格子就竖着放骨牌,这时候竖着放的骨牌的摆放法是唯一的。所以一个合法方案里,横着放的骨牌的摆放方法就决定了整个方案,我们只需要算骨牌横着放有多少合法方案即可。我们可以枚举每一列,然后对每一列赋予一个状态,用一个整数的二进制位表示,如果该列的第 i i i行(从 0 0 0开始计数)有骨牌在此(这个骨牌是左边那列的第 i i i行横着放延伸出来的),那么这个二进制位就标记为 1 1 1,否则标记为 0 0 0。接下来我们枚举当前列横着放骨牌的所有方案,而当前列的方案取决于左边那列是怎么放的。设 f [ i ] [ j ] f[i][j] f[i][j]表示如果第 i i i列的摆放状态是 j j j(这里的 i i i 0 0 0开始计数),有多少种方案。那么 f [ i ] [ j ] f[i][j] f[i][j]取决于 f [ i − 1 ] [ . ] f[i-1][.] f[i1][.]。我们遍历 f [ i − 1 ] [ k ] , 0 ≤ k ≤ 2 n − 1 f[i-1][k],0\le k\le 2^n-1 f[i1][k],0k2n1,看一下第 i − 1 i-1 i1列的状态是 k k k的情况下,当前第 i i i列的状态能否是 j j j。首先,如果 j & k = 1 j\& k=1 j&k=1的话,意味着在某一行,第 i − 1 i-1 i1列有一个横着的骨牌的“凸起”,这时 k k k的状态不合法,略过;如果 j ∣ k j|k jk某段含连续奇数个 0 0 0,这也是不行的,因为这些位置需要 2 × 1 2\times 1 2×1放法的骨牌(即骨牌竖着放),所以连续的 0 0 0的个数必须是偶数个才可以。除此之外,别的情况的 k k k都是合法的。所以有: f [ i ] [ j ] = ∑ 0 ≤ k < 2 n , j & k = 0 , j ∣ k   h a s   n o   o d d   c o n s e c u t i v e   0 s f [ i − 1 ] [ k ] f[i][j]=\sum_{0\le k<2^n,j\&k=0,j|k\ \mathrm{has\ no\ odd\ consecutive\ 0s}} f[i-1][k] f[i][j]=0k<2n,j&k=0,jk has no odd consecutive 0sf[i1][k]初始条件 f [ 0 ] [ 0 ] = 1 , f [ 0 ] [ . > 0 ] = 0 f[0][0]=1,f[0][.>0]=0 f[0][0]=1,f[0][.>0]=0,因为第 0 0 0列不可能有骨牌横放的“凸起”。代码如下:

#include <iostream>
#include <cstring>
using namespace std;

const int N = 12, M = 1 << N;

int n, m;
long f[N][M];
// st[i]存i这个数的二进制表示里是否没有奇数个连续0,如果没有则取true
bool st[M];

int main() {
    while (1) {
        scanf("%d%d", &n, &m);
        if (n == 0 && m == 0) break;

        for (int i = 0; i < 1 << n; i++) {
            st[i] = true;
            int cnt = 0;
            for (int j = 0; j < n; j++)
                if (i >> j & 1) {
                	// 如果累加了奇数个0了,标记为false
                    if (cnt & 1) {
                    	st[i] = false;
                    	break;
                    }
                    // 如果累加了偶数个0,则暂时没发现非法,重置cnt继续数
                    cnt = 0;
                } else cnt++;  // 累加0
            
            // 看一下结尾是否有奇数个0
            if (cnt & 1) st[i] = false;
        }
		
		// 每个test case先重置f
        memset(f, 0, sizeof f);
        // 想象第1列左边还有个第0列,那么这个第0列是不能有横着放的骨牌的,这是唯一的合法方案
        f[0][0] = 1;
        // 遍历列
        for (int i = 1; i <= m; i++)
        	// 遍历当前列的方案
            for (int j = 0; j < 1 << n; j++)
            	// 遍历前一列的方案
                for (int k = 0; k < 1 << n; k++)
                	// 当前一列的方案和当前列无矛盾,则累加答案
                    if ((j & k) == 0 && st[j | k])
                        f[i][j] += f[i - 1][k];
        
        // 一个合法方案必须不能导致第m列有“凸起”
        cout << f[m][0] << endl;
    }

    return 0;
}

时间复杂度 O ( m 4 n ) O(m4^n) O(m4n),空间 O ( m 2 n ) O(m2^n) O(m2n)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值