九大背包问题专题--背包问题求具体方案数

8.背包问题求具体方案数

问题:
有N件物品和一个容量是V的背包。

每件物品只能用一次,第i件物品的体积是vi,价值是wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包的容量,且价值总和最大。

输出字典序最小的方案。这里的字典序是指:所选物品的编号所构成的序列。物品的编号的序列范围是1…N.

输入格式
第一行有两个整数,N,V用空格隔开,分别表示物品数量、背包容积。

接下来有N行,每行两个个整数vi,wi,用空格隔开,分别表示第i件物品的体积、价值。

输出格式
输出一行,包含若干个用空格隔开的整数吗,表示最优解中所选物品的编号序列,且该编号序列的字典序最小。
物品编号范围1…N.
数据范围
0<N,V<=1000
0<vi,wi<=1000

输入样例
4 5
1 2
2 4
3 4
4 6

输出样例
1 4

分析思路:

f[i][j]:表示考虑前i个物品的情况下,重量最大为j的情况下,最大价值是多少
反推:
假设最优解一定为f[n][m]
判断第n个物品是否选择,遍历f[n-1][m],实际就是看f[n-1][m]是从哪个状态转移的

1.如果 f[n][m]=f[n-1][m] ,不选第n个物品

2.反之,如果f[n][m]=f[n-1][m-v[i]]+w[i],选这个物品,得到最优解。

枚举:从后往前枚举,
如果可以选第一个物品,一定要选它,保证字典序最小

代码:

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;

const int N=1010;
int n,m; 
int f[N][N],v[N],w[N]; 
int main(){
	cin>>n>>m;
	for(int i=1;i<=n;i++)
	cin>>v[i]>>w[i];
	for(int i=n;i>=1;i--)  //从后往前枚举 
	  for(int j=0;j<=m;j++)
	  {
	  	f[i][j]=f[i+1][j];
	  	if(j>=v[i])
	  	f[i][j]=max(f[i][j],f[i+1][j-v[i]]+w[i]);
	  }
	  int vol=m; //反推,最开始体积为m 
	  for(int i=1;i<=n;i++//从前往后看物品,若能选 
	     if(f[i][vol]==f[i+1][vol-v[i]]+w[i]) //当前体积下f[i]和f[i+1]相同 ,都选择 
	     {
	     	cout<<i<<' ';
	     	vol-=v[i];
		 }
		 return 0;
	}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值