8.背包问题求具体方案数
问题:
有N件物品和一个容量是V的背包。
每件物品只能用一次,第i件物品的体积是vi,价值是wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包的容量,且价值总和最大。
输出字典序最小的方案。这里的字典序是指:所选物品的编号所构成的序列。物品的编号的序列范围是1…N.
输入格式
第一行有两个整数,N,V用空格隔开,分别表示物品数量、背包容积。
接下来有N行,每行两个个整数vi,wi,用空格隔开,分别表示第i件物品的体积、价值。
输出格式
输出一行,包含若干个用空格隔开的整数吗,表示最优解中所选物品的编号序列,且该编号序列的字典序最小。
物品编号范围1…N.
数据范围
0<N,V<=1000
0<vi,wi<=1000
输入样例
4 5
1 2
2 4
3 4
4 6
输出样例
1 4
分析思路:
f[i][j]:表示考虑前i个物品的情况下,重量最大为j的情况下,最大价值是多少
反推:
假设最优解一定为f[n][m]
判断第n个物品是否选择,遍历f[n-1][m],实际就是看f[n-1][m]是从哪个状态转移的
1.如果 f[n][m]=f[n-1][m] ,不选第n个物品
2.反之,如果f[n][m]=f[n-1][m-v[i]]+w[i],选这个物品,得到最优解。
枚举:从后往前枚举,
如果可以选第一个物品,一定要选它,保证字典序最小
代码:
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=1010;
int n,m;
int f[N][N],v[N],w[N];
int main(){
cin>>n>>m;
for(int i=1;i<=n;i++)
cin>>v[i]>>w[i];
for(int i=n;i>=1;i--) //从后往前枚举
for(int j=0;j<=m;j++)
{
f[i][j]=f[i+1][j];
if(j>=v[i])
f[i][j]=max(f[i][j],f[i+1][j-v[i]]+w[i]);
}
int vol=m; //反推,最开始体积为m
for(int i=1;i<=n;i++//从前往后看物品,若能选
if(f[i][vol]==f[i+1][vol-v[i]]+w[i]) //当前体积下f[i]和f[i+1]相同 ,都选择
{
cout<<i<<' ';
vol-=v[i];
}
return 0;
}