【ACWing】321. 棋盘分割

题目地址:

https://www.acwing.com/problem/content/323/

将一个 8 × 8 8×8 8×8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分继续如此分割,这样割了 ( n − 1 ) (n−1) (n1)次后,连同最后剩下的矩形棋盘共有 n n n块矩形棋盘。每次切割都只能沿着棋盘格子的边进行,例如下面的两个图,右图里中间竖着切一刀之后,不能继续在左右两边切了,只能在一边切;左图就是满足条件的。
在这里插入图片描述
原棋盘上每一格有一个分值,一块矩形棋盘的总分为其所含各格分值之和。现在需要把棋盘按上述规则分割成 n n n块矩形棋盘,并使各矩形棋盘总分的均方差最小。均方差 σ = ∑ i = 1 n ( x i − x ˉ ) 2 n \sigma = \sqrt{\frac{\sum_{i=1}^n(x_i-\bar{x})^2}{n}} σ=ni=1n(xixˉ)2 ,其中平均值 x ˉ = ∑ i = 1 n x i n \bar{x}=\frac{\sum_{i=1}^{n}x_i}{n} xˉ=ni=1nxi x i x_i xi为第 i i i块矩形棋盘的总分。请编程对给出的棋盘及 n n n,求出均方差的最小值。

输入格式:
1 1 1行为一个整数 n n n。第 2 2 2行至第 9 9 9行每行为 8 8 8个小于 100 100 100的非负整数,表示棋盘上相应格子的分值。每行相邻两数之间用一个空格分隔。

输出格式:
输出最小均方差值(四舍五入精确到小数点后三位)。

数据范围:
1 < n < 15 1<n<15 1<n<15

思路是记忆化搜索。设 f [ x 1 ] [ y 1 ] [ x 2 ] [ y 2 ] [ k ] f[x_1][y_1][x_2][y_2][k] f[x1][y1][x2][y2][k]是将以 ( x 1 , y 1 ) (x_1,y_1) (x1,y1)为左上角, ( x 2 , y 2 ) (x_2,y_2) (x2,y2)为右下角的矩形按上述法则切割为 k k k块时的最小均方差的平方除以 n n n。我们可以按照第一刀是怎么切的来分类。第一刀切割方式可以分为竖着切和横着切。比如可以枚举竖着切的那一刀是在哪列的右边沿,选项有 x 1 , x 1 + 1 , . . . , x 2 − 1 x_1,x_1+1,...,x_2-1 x1,x1+1,...,x21,切割完毕之后,还需要枚举是继续切左半部分还是有半部分,对于不再切割的那半部分,它对 f f f的贡献就是,设其和为 s s s,则贡献为 1 n ( s − x ˉ ) 2 \frac{1}{n}(s-\bar{x})^2 n1(sxˉ)2。所以在竖着切的情形下,有: f [ x 1 ] [ y 1 ] [ x 2 ] [ y 2 ] [ k ] = min ⁡ { f [ x 1 ] [ y 1 ] [ x 2 ] [ c ] [ k − 1 ] + 1 n ( ∑ a [ ( x 1 , c + 1 ) : ( x 2 , y 2 ) ] − x ˉ ) 2 , 1 n ( ∑ a [ ( x 1 , y 1 ) : ( x 2 , c ) ] − x ˉ ) 2 + f [ x 1 ] [ c + 1 ] [ x 2 ] [ y 2 ] [ k − 1 ] } f[x_1][y_1][x_2][y_2][k]=\min\{f[x_1][y_1][x_2][c][k-1]+\frac{1}{n}(\sum a[(x_1,c+1):(x_2,y_2)]-\bar{x})^2,\\\frac{1}{n}(\sum a[(x_1,y_1):(x_2,c)]-\bar{x})^2+f[x_1][c+1][x_2][y_2][k-1]\} f[x1][y1][x2][y2][k]=min{f[x1][y1][x2][c][k1]+n1(a[(x1,c+1):(x2,y2)]xˉ)2,n1(a[(x1,y1):(x2,c)]xˉ)2+f[x1][c+1][x2][y2][k1]}接着类似考虑横着切的情形,四种情况取最小值即可,但最后要返回 f [ 1 ] [ 1 ] [ 8 ] [ 8 ] [ n ] \sqrt{f[1][1][8][8][n]} f[1][1][8][8][n] 。为了代码方便,可以用记忆化搜索来做。同时可以预处理出二维前缀和,加快子矩阵求和的速度。代码如下:

#include <iostream>
#include <cstring>
#include <cmath>
using namespace std;

const int N = 15, M = 9;
const double INF = 1e8;
int n, m = 8;
int s[N][N];
double f[M][M][M][M][N];
// 存矩阵和除以n
double X;

// 返回左上角是(x1, y1),右下角是(x2, y2)的子矩阵对f的贡献
double get_divn(int x1, int y1, int x2, int y2) {
    double sum = s[x2][y2] - s[x2][y1 - 1] - s[x1 - 1][y2] + s[x1 - 1][y1 - 1] - X;
    return sum * sum / n;
}

// 返回如果切割左上角是(x1, y1),右下角是(x2, y2)的子矩阵,一共切k次,该子矩阵对f的最小贡献
double dfs(int x1, int y1, int x2, int y2, int k) {
    double &v = f[x1][y1][x2][y2][k];
    // 一开始f被赋值为负数(double被memset -1之后是NaN),
    // 如果大于等于0说明之前已经被算出,则直接调取记忆返回之
    if (v >= 0) return v;
    // 如果只剩一块,它对f的贡献由上面的函数给出
    if (k == 1) return v = get_divn(x1, y1, x2, y2);

    v = INF;
    // 枚举横着切
    for (int i = x1; i < x2; i++) {
        v = min(v, dfs(x1, y1, i, y2, k - 1) + get_divn(i + 1, y1, x2, y2));
        v = min(v, dfs(i + 1, y1, x2, y2, k - 1) + get_divn(x1, y1, i, y2));
    }

	// 枚举竖着切
    for (int i = y1; i < y2; i++) {
        v = min(v, dfs(x1, y1, x2, i, k - 1) + get_divn(x1, i + 1, x2, y2));
        v = min(v, dfs(x1, i + 1, x2, y2, k - 1) + get_divn(x1, y1, x2, i));
    }

    return v;
}

int main() {
    cin >> n;	

	// 求一下二维前缀和数组
    for (int i = 1; i <= m; i++)
        for (int j = 1; j <= m; j++) {
            cin >> s[i][j];
            s[i][j] += s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1];
        }

    memset(f, -1, sizeof f);
    // X存整个矩阵的和除以n
    X = (double) s[m][m] / n;

    printf("%.3lf\n", sqrt(dfs(1, 1, 8, 8, n)));

    return 0;
}

时空复杂度本质上是 O ( 1 ) O(1) O(1)的,因为棋盘本身是 8 × 8 8\times 8 8×8的, n n n最多就取 14 14 14,所以 f f f数组整个空间也是个常数。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,这是一个经典的问题。国际象棋棋盘上的骑士可以沿着L形移动,即先向上(或下)走两步,再向左(或右)走一步;或者先向左(或右)走两步,再向上(或下)走一步。为了确定处于骑士攻击下的格子个数,我们可以按照以下步骤进行: 1. 枚举棋盘上的每一个格子,判断该格子是否处于骑士攻击下。 2. 对于每一个格子,判断它的八个方向是否存在骑士攻击,如果存在,则将该格子计入答案。 具体实现可以使用两层循环来枚举棋盘上的每一个格子,再使用一些判断语句来判断该格子周围的八个方向是否存在骑士攻击。具体代码实现如下(假设棋盘大小为8x8): ``` int cnt = 0; // 计数器,记录处于骑士攻击下的格子个数 for(int i = 0; i < 8; i++) { for(int j = 0; j < 8; j++) { // 判断该格子是否处于骑士攻击下 if((i >= 2 && j >= 1 && board[i-2][j-1] == 'K') || (i >= 2 && j <= 6 && board[i-2][j+1] == 'K') || (i >= 1 && j >= 2 && board[i-1][j-2] == 'K') || (i >= 1 && j <= 5 && board[i-1][j+2] == 'K') || (i <= 6 && j >= 2 && board[i+1][j-2] == 'K') || (i <= 6 && j <= 5 && board[i+1][j+2] == 'K') || (i <= 5 && j >= 1 && board[i+2][j-1] == 'K') || (i <= 5 && j <= 6 && board[i+2][j+1] == 'K')) { cnt++; } } } // 输出结果 cout << cnt << endl; ``` 其中,board是一个字符型的二维数组,表示棋盘上每个格子的状态('K'表示该格子上有一个骑士,'.'表示该格子为空)。代码中的注释已经解释了每个判断语句的含义。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值