【ACWing】1129. 热浪

这篇博客介绍了如何利用Dijkstra算法和SPFA算法解决图中最短路径问题。给出了两种算法的C++实现,适用于稀疏图的情况。Dijkstra算法采用堆优化,时间复杂度为O(ClogT),而SPFA算法虽然理论上最坏情况时间复杂度为O(CT),但在实践中通常更快,空间复杂度为O(T^2)。这两个算法都是寻找从起点到终点的最小费用路径的有效方法。
摘要由CSDN通过智能技术生成

题目地址:

https://www.acwing.com/problem/content/1131/

德克萨斯纯朴的民众们这个夏天正在遭受巨大的热浪!!!他们的德克萨斯长角牛吃起来不错,可是它们并不是很擅长生产富含奶油的乳制品。农夫John此时身先士卒地承担起向德克萨斯运送大量的营养冰凉的牛奶的重任,以减轻德克萨斯人忍受酷暑的痛苦。John已经研究过可以把牛奶从威斯康星运送到德克萨斯州的路线。这些路线包括起始点和终点一共有 T T T个城镇,为了方便标号为 1 1 1 T T T。除了起点和终点外的每个城镇都由 双向道路 连向至少两个其它的城镇。每条道路有一个通过费用(包括油费,过路费等等)。给定一个地图,包含 C C C条直接连接 2 2 2个城镇的道路。每条道路由道路的起点 R s R_s Rs,终点 R e R_e Re和花费 C i C_i Ci组成。求从起始的城镇 T s T_s Ts到终点的城镇 T e T_e Te最小的总费用。

输入格式:
第一行: 4 4 4个由空格隔开的整数: T , C , T s , T e T,C,T_s,T_e T,C,Ts,Te;第 2 2 2到第 C + 1 C+1 C+1行:第 i + 1 i+1 i+1行描述第 i i i条道路,包含 3 3 3个由空格隔开的整数: R s , R e , C i R_s,R_e,C_i Rs,Re,Ci

输出格式:
一个单独的整数表示从 T s T_s Ts T e T_e Te的最小总费用。数据保证至少存在一条道路。

数据范围:
1 ≤ T ≤ 2500 1≤T≤2500 1T2500
1 ≤ C ≤ 6200 1≤C≤6200 1C6200
1 ≤ T s , T e , R s , R e ≤ T 1≤T_s,T_e,R_s,R_e≤T 1Ts,Te,Rs,ReT
1 ≤ C i ≤ 1000 1≤C_i≤1000 1Ci1000

图是稀疏图,可以用堆优化版Dijkstra算法来做。参考https://blog.csdn.net/qq_46105170/article/details/113816744。代码如下:

#include <iostream>
#include <cstring>
#include <queue>
using namespace std;

typedef pair<int, int> PII;

const int N = 2510;
int n, m;
int st, ed, dis[N];
bool vis[N];
// 邻接矩阵存图,可以防止被平行边卡
int g[N][N];

int dijkstra() {
    priority_queue<PII, vector<PII>, greater<PII> > heap;
    heap.push({0, st});

    memset(dis, 0x3f, sizeof dis);    
    dis[st] = 0;

    while (heap.size()) {
        auto t = heap.top();
        heap.pop();

        int v = t.second, d = t.first;
        // 如果终点出堆了,那么最短路就找到了,直接返回之
        if (v == ed) return dis[v];
		
		// 出堆的元素的最短路已经找到了,标记之
        vis[v] = true;

        for (int i = 1; i <= n; i++) {
            if (!vis[i] && dis[i] > dis[v] + g[v][i]) {
                dis[i] = dis[v] + g[v][i];
                heap.push({dis[i], i});
            }
        }
    }

    return -1;
}

int main() {
    cin >> n >> m;
    cin >> st >> ed;

    memset(g, 0x3f, sizeof g);

    for (int i = 0; i < m; i++) {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        // 平行边只存最短的那条
        g[a][b] = g[b][a] = min(g[a][b], c);
    }

    cout << dijkstra() << endl;

    return 0;
}

时间复杂度 O ( C log ⁡ T ) O(C\log T) O(ClogT),空间 O ( T 2 + C ) O(T^2+C) O(T2+C)

也可以用SPFA来做。参考https://blog.csdn.net/qq_46105170/article/details/113821633。代码如下:

#include <iostream>
#include <cstring>
#include <queue>
using namespace std;

const int N = 2510;
int n, m;
int s, e, dis[N];
bool st[N];
int g[N][N];

void spfa() {
    memset(dis, 0x3f, sizeof dis);
    dis[s] = 0;
    
    queue<int> q;
    q.push(s);

    while (q.size()) {
        int t = q.front();
        q.pop();
        st[t] = false;

        for (int i = 1; i <= n; i++) {
            if (dis[i] > dis[t] + g[t][i]) {
                dis[i] = dis[t] + g[t][i];
                if (!st[i]) {
                    q.push(i);
                    st[i] = true;
                }
            }
        }
    }
}

int main() {
    cin >> n >> m;
    cin >> s >> e;

    memset(g, 0x3f, sizeof g);

    for (int i = 0; i < m; i++) {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        g[a][b] = g[b][a] = min(g[a][b], c);
    }

    spfa();

    cout << dis[e] << endl;

    return 0;
}

时间复杂度 O ( C T ) O(CT) O(CT)(但实际要比这个快很多),空间 O ( T 2 ) O(T^2) O(T2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值