【ACWing】246. 区间最大公约数

题目地址:

https://www.acwing.com/problem/content/247/

给定一个长度为 N N N的数列 A A A,以及 M M M条指令,每条指令可能是以下两种之一:C l r d,表示把 A [ l ] , A [ l + 1 ] , … , A [ r ] A[l],A[l+1],…,A[r] A[l],A[l+1],,A[r]都加上 d d dQ l r,表示询问 A [ l ] , A [ l + 1 ] , … , A [ r ] A[l],A[l+1],…,A[r] A[l],A[l+1],,A[r]的最大公约数(GCD)。对于每个询问,输出一个整数表示答案。

输入格式:
第一行两个整数 N , M N,M N,M。第二行 N N N个整数 A [ i ] A[i] A[i]。接下来 M M M行表示 M M M条指令,每条指令的格式如题目描述所示。

输出格式:
对于每个询问,输出一个整数表示答案。每个答案占一行。

数据范围:
N ≤ 500000 , M ≤ 100000 N≤500000,M≤100000 N500000,M100000
1 ≤ A [ i ] ≤ 1 0 18 1≤A[i]≤10^{18} 1A[i]1018
∣ d ∣ ≤ 1 0 18 |d|≤10^{18} d1018

维护和询问区间信息的问题,想到用线段树。接下来考虑每个树节点要存什么信息。首先要存区间数的最大公约数,并且最大公约数确实能由左右子区间的最大公约数算出来。接下来要考虑如何应付将区间每个数都加上 d d d。如果要把这一步操作也变为单点修改的话,能大大简化问题的复杂性,而差分数组能很好的解决这个问题。并且,容易验证, gcd ⁡ ( a 1 , a 2 , . . . , a k ) = gcd ⁡ ( a 1 , a 2 − a 1 , . . . , a k − a k − 1 ) \gcd (a_1, a_2, ..., a_k)=\gcd(a_1, a_2-a_1,...,a_k-a_{k-1}) gcd(a1,a2,...,ak)=gcd(a1,a2a1,...,akak1)(很容易验证两边的数的公约数集合是一模一样的,那么最大公约数当然也是一样的),所以每次求区间 [ l , r ] [l,r] [l,r]最大公约数的时候,我们只需要求出 a l a_l al,再求一下 gcd ⁡ ( a l + 1 , . . . , a r ) \gcd(a_{l+1},...,a_r) gcd(al+1,...,ar)即可,前者可以由差分数组的前缀和求出,后者则直接询问两个子区间即可。所以我们只需要构造一个维护 A [ i ] A[i] A[i]的差分数组 D [ i ] = A [ i ] − A [ i − 1 ] , D [ 0 ] = 0 D[i]=A[i]-A[i-1],D[0]=0 D[i]=A[i]A[i1],D[0]=0的线段树即可,树节点存区间和与区间最大公约数,修改的时候,如果要让 [ l , r ] [l,r] [l,r]的所有元素都加 d d d,那么相当于对差分数组做两次单点修改,即让 D [ l ] D[l] D[l]增加 d d d并且让 D [ r + 1 ] D[r+1] D[r+1]增加 − d -d d(当然如果 r + 1 > n r+1>n r+1>n那就不用做这步了);询问的时候,则先询问 [ 1 , l ] [1,l] [1,l]的区间和,再询问 [ l + 1 , r ] [l+1,r] [l+1,r]的最大公约数,两个数再求一下最大公约数即得 [ l , r ] [l,r] [l,r]的最大公约数,这里依然要注意特殊情况 l + 1 > r l+1>r l+1>r,此时最大公约数设为 0 0 0即可。代码如下:

#include <iostream>
using namespace std;

const int N = 500010;
int n, m;
// a存输入的序列
long a[N];
// l和r存树节点维护的差分数组的区间左右端点,sum存区间和,d存区间最大公约数
struct Node {
    int l, r;
    long sum, d;
} tr[4 * N];

long gcd(long a, long b) {
    return !b ? a : gcd(b, a % b);
}

void pushup(Node &u, Node &l, Node &r) {
    u.sum = l.sum + r.sum;
    u.d = gcd(l.d, r.d);
}

void pushup(int u) {
    pushup(tr[u], tr[u << 1], tr[u << 1 | 1]);
}

void build(int u, int l, int r) {
    if (l == r) {
        long b = a[r] - a[r - 1];
        tr[u] = {l, r, b, b};
    } else {
        tr[u] = {l, r};
        int m = l + (r - l >> 1);
        build(u << 1, l, m), build(u << 1 | 1, m + 1, r);
        pushup(u);
    }
}

// 让差分数组的下标x的位置增加v
void modify(int u, int x, long v) {
    if (tr[u].l == x && tr[u].r == x) {
        long b = tr[u].sum + v;
        tr[u] = {x, x, b, b};
    } else {
        int m = tr[u].l + (tr[u].r - tr[u].l >> 1);
        if (x <= m) modify(u << 1, x, v);
        else modify(u << 1 | 1, x, v);

        pushup(u);
    }
}

Node query(int u, int l, int r) {
	// 如果当前询问的区间无效,那么就返回个0,因为0与任何数的最大公约数都是对方
    if (l > r) return {0};
    if (l <= tr[u].l && tr[u].r <= r) return tr[u];
    else {
        int m = tr[u].l + (tr[u].r - tr[u].l >> 1);
        if (r <= m) return query(u << 1, l, r);
        else if (l > m) return query(u << 1 | 1, l, r);
        else {
            auto left = query(u << 1, l, r), right = query(u << 1 | 1, l, r);
            Node res;
            pushup(res, left, right);
            return res;
        }
    }
}

int main() {
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++) scanf("%ld", &a[i]);

    build(1, 1, n);

    int l, r;
    long d;
    char op[2];
    while (m--) {
        scanf("%s%d%d", op, &l, &r);
        if (op[0] == 'Q') {
            auto left = query(1, 1, l), right = query(1, l + 1, r);
            cout << abs(gcd(left.sum, right.d)) << endl;
        } else {
            scanf("%ld", &d);
            modify(1, l, d);
            if (r + 1 <= n) modify(1, r + 1, -d);
        }
    }

    return 0;
}

预处理时间复杂度 O ( N ) O(N) O(N),每次操作时间复杂度 O ( log ⁡ N ) O(\log N) O(logN),空间 O ( N ) O(N) O(N)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值