【Leetcode】519. Random Flip Matrix

这篇博客介绍了如何实现一个等概率随机翻转矩阵的算法,该算法允许等概率选择一个0并将其翻转为1,同时提供重置功能。博主使用HashMap和随机数生成器来维护矩阵状态,确保每次翻转的概率相等,时间复杂度为O(1),空间复杂度为O(mn)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目地址:

https://leetcode.com/problems/random-flip-matrix/

给定一个 m × n m\times n m×n的矩阵,一开始每个值都是 0 0 0。设计一个算法可以执行如下操作:
1、int[] flip():等概率随机选取一个 0 0 0将其变成 1 1 1,并且返回该位置的坐标;
2、void reset():重置,将每个值都变为 0 0 0

这题等价于在长 n ′ = m × n n'=m\times n n=m×n的一维数组 A A A上操作,不妨将这里的 n ′ n' n也写为 n n n。开一个变量 t t t记录当前还有多少个 0 0 0,并假设我们有一个HashMap,叫 m p mp mp,它将 [ 0 , 1 , . . . , t − 1 ] [0,1,...,t-1] [0,1,...,t1]都映射到值为 0 0 0的不同的位置,将 [ t , . . . , n − 1 ] [t,...,n-1] [t,...,n1]都映射到值为 1 1 1的不同的位置。这样每次flip的时候,就先产生一个 [ 0 , . . . , t − 1 ] [0,...,t-1] [0,...,t1]的随机数 x x x,然后查询 x x x映射到了哪里,不妨记为 y = m p [ x ] y=mp[x] y=mp[x],那么这个 y y y所表示的位置上的值是 0 0 0,从而可以用于返回,并且将这个位置标记为 1 1 1;接下来需要维护各个变量的含义,由于 m p [ t − 1 ] = 0 mp[t-1]=0 mp[t1]=0,所以我们考虑执行 m p [ x ] = m p [ t − 1 ] mp[x]=mp[t-1] mp[x]=mp[t1],这样 m p [ x ] mp[x] mp[x]所表示的位置上的数也等于 0 0 0;接下来执行 m p [ t − 1 ] = y mp[t-1]=y mp[t1]=y,由于 y y y这个位置上的数 A [ y ] = 1 A[y]=1 A[y]=1了,即 m p [ t − 1 ] mp[t-1] mp[t1]位置上面的数是 1 1 1,这时候执行 t − − t-- t,这样 t t t的含义也维护了。显然每次选取flip的位置是等概率选取的。代码如下:

import java.util.HashMap;
import java.util.Map;
import java.util.Random;

public class Solution {
    
    Map<Integer, Integer> map;
    int m, n, total;
    Random rand;
    
    public Solution(int m, int n) {
    	// 一开始可以默认为map[x] = x,可以参考flip里的getOrDefault函数写法
        map = new HashMap<>();
        rand = new Random();
        this.m = m;
        this.n = n;
        total = m * n;
    }
    
    public int[] flip() {
        int x = rand.nextInt(total--);
        int y = map.getOrDefault(x, x);
        map.put(x, map.getOrDefault(total, total));
        map.put(total, y);
        // 一维映射回二维
        return new int[]{y / n, y % n};
    }
    
    public void reset() {
    	// reset不需要重置map,因为此时map可以认为是,
    	// map[x]未定义则map[x] = x,也是满足条件的
        total = m * n;
    }
}

时间复杂度 O ( 1 ) O(1) O(1),空间 O ( m n ) O(mn) O(mn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值