题目地址:
https://www.luogu.com.cn/problem/P2803
题目描述:
在一条大路一旁有许多栋楼,每栋楼里有许多小学生(哈哈哈一波小学生来袭!)。但是这条路上没有小学!!!!所以唯恐世界不乱的牛A打算在路上(汽车什么的都不敢来这个小学生云集的地方咯,所以不用担心安全问题)任选几点(可以和楼重合,当然也可以不重合)建立小学,且使所有小学生上学走的路程之和最短。牛A发现修建一所小学根本无法满足他唯恐世界不乱的(变态)心理,所以他准备建立
K
K
K所小学。
输入格式:
第一行
2
2
2个整数,表示楼数
n
n
n,学校数
k
k
k(
1
≤
n
,
k
≤
100
1\le n,k\le 100
1≤n,k≤100)
第二行
n
n
n个整数,表示每栋楼的学生数(
0
<
0<
0<每栋楼学生数
≤
100
≤100
≤100)
第三行
n
−
1
n-1
n−1个数,分别表示楼
i
i
i到楼
i
+
1
i+1
i+1之间距离(
1
≤
1≤
1≤距离
≤
100
≤100
≤100,
1
≤
i
≤
n
−
1
1≤i≤n-1
1≤i≤n−1)
输出格式:
即学生走的距离和的最小值
以第 1 1 1个楼的位置作为坐标原点,设第 i i i个楼的位置为 d [ i ] d[i] d[i]。容易证明,如果要在 [ d [ i − 1 ] , d [ i ] ] [d[i-1],d[i]] [d[i−1],d[i]]中选一个地方放学校,则该学校最优位置一定是两个端点其一处。当前 i − 1 i-1 i−1个大楼的总学生数大于第 i i i到 n n n个大楼的总学生数的时候,显然要选 d [ i ] d[i] d[i]处建学校;如果小于,则在 d [ i − 1 ] d[i-1] d[i−1]处建学校;如果等于,则两个点都可以。
我们可以预处理一个二维数组 g [ i ] [ j ] g[i][j] g[i][j],表示只考虑第 i ∼ j i\sim j i∼j的楼的学生的时候,最优的放置学校的位置。 g g g是很容易求出的。再定义 f [ i ] [ k ] f[i][k] f[i][k]为在前 i i i个楼的范围内建 k k k个学校的情况下,最小的总距离和是多少。那么,如果 k ≥ i k\ge i k≥i,则 f [ i ] [ k ] = 0 f[i][k]=0 f[i][k]=0;如果 k = 1 k=1 k=1,即只建一个学校,则根据定义, f [ i ] [ k ] = g [ 1 ] [ i ] f[i][k]=g[1][i] f[i][k]=g[1][i];剩余情况,可以按最右边的那个学校服务哪些楼的学生来分类,如果是建在 d [ l ] ∼ d [ i ] d[l]\sim d[i] d[l]∼d[i]之间(并且也服务这些学生),那么最小总距离为 f [ l − 1 ] [ k − 1 ] + g [ l ] [ i ] f[l-1][k-1]+g[l][i] f[l−1][k−1]+g[l][i],所以: f [ i ] [ k ] = min l = 1 , 2 , . . . , i f [ l − 1 ] [ k − 1 ] + g [ l ] [ i ] f[i][k]=\min_{l=1,2,...,i} f[l-1][k-1]+g[l][i] f[i][k]=l=1,2,...,iminf[l−1][k−1]+g[l][i]最后返回 f [ n ] [ k ] f[n][k] f[n][k]即可。代码如下:
#include <iostream>
#include <cstring>
using namespace std;
const int N = 110;
int n, K;
int dis[N];
int g[N][N], f[N][N], w[N];
int main() {
scanf("%d%d", &n, &K);
for (int i = 1; i <= n; i++) {
int x;
scanf("%d", &x);
w[i] = w[i - 1] + x;
}
for (int i = 2; i <= n; i++) {
int x;
scanf("%d", &x);
dis[i] = dis[i - 1] + x;
}
for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++) {
// 找到只考虑第j到第i个楼的情况下,学校放哪里总距离和最小
int k;
for (k = j; k <= i; k++)
if (w[k] - w[j - 1] >= w[i] - w[k]) break;
k = min(k, i);
for (int l = j; l <= i; l++)
g[j][i] += abs(dis[k] - dis[l]) * (w[l] - w[l - 1]);
}
memset(f, 0x3f, sizeof f);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= K; j++) {
if (j >= i) f[i][j] = 0;
else if (j == 1) f[i][j] = g[1][i];
else {
for (int l = 1; l <= i; l++)
f[i][j] = min(f[i][j], f[l - 1][j - 1] + g[l][i]);
}
}
printf("%d\n", f[n][K]);
}
时间复杂度 O ( n 2 ( n + k ) ) O(n^2(n+k)) O(n2(n+k)),空间 O ( n ( n + k ) ) O(n(n+k)) O(n(n+k))。