题目地址:
https://leetcode.com/problems/frog-position-after-t-seconds/
给定一棵 n n n个节点的无向树,节点编号 1 ∼ n 1\sim n 1∼n,从 1 1 1开始出发,每次等概率跳到相邻的未访问过的节点。问经过 t t t次跳跃,恰好处于节点 v v v的概率。
思路是DFS,可以看出如果以 1 1 1为根将整棵树看成有根树的话,每步走的时候,是不会走回头路的。每次传递一下从 1 1 1能走到当前节点概率。如果发现步数超过 t t t仍然没走到 v v v,则说明走不到,返回 0 0 0。如果走到 v v v了,判断一下,如果步数恰好是 t t t或者接下来无路可走,则返回概率;否则说明无法停留在 v v v,返回 0 0 0。代码如下:
class Solution {
public:
double frogPosition(int n, vector<vector<int>>& edges, int t, int target) {
unordered_map<int, vector<int>> g;
for (auto& e : edges) {
g[e[0]].push_back(e[1]);
g[e[1]].push_back(e[0]);
}
return dfs(1, -1, t, 1.0, g, target);
}
// t为从u出发,还要走多少步;p是从1跳到u的概率
double dfs(int u, int from, int t, double p,
unordered_map<int, vector<int>>& g, int target) {
if (!t) {
if (u == target) return p;
return 0;
}
int cnt = g[u].size();
if (u != 1) cnt--;
if (!cnt) {
if (u == target) return p;
return 0;
}
double res = 0;
for (int v : g[u]) {
if (v == from) continue;
if ((res = dfs(v, u, t - 1, p / cnt, g, target)) > 0) return res;
}
return 0;
}
};
时空复杂度 O ( n ) O(n) O(n)。