【Leetcode】1377. Frog Position After T Seconds

该博客介绍了如何解决LeetCode上的概率问题——青蛙位置。在给定无向树和起始节点1的情况下,每次等概率跳跃到未访问的相邻节点,求在t步后位于目标节点v的概率。通过深度优先搜索(DFS)策略,递归计算从1到每个节点的概率,并返回目标节点在步数t时的概率。算法的时间复杂度为O(n)。
摘要由CSDN通过智能技术生成

题目地址:

https://leetcode.com/problems/frog-position-after-t-seconds/

给定一棵 n n n个节点的无向树,节点编号 1 ∼ n 1\sim n 1n,从 1 1 1开始出发,每次等概率跳到相邻的未访问过的节点。问经过 t t t次跳跃,恰好处于节点 v v v的概率。

思路是DFS,可以看出如果以 1 1 1为根将整棵树看成有根树的话,每步走的时候,是不会走回头路的。每次传递一下从 1 1 1能走到当前节点概率。如果发现步数超过 t t t仍然没走到 v v v,则说明走不到,返回 0 0 0。如果走到 v v v了,判断一下,如果步数恰好是 t t t或者接下来无路可走,则返回概率;否则说明无法停留在 v v v,返回 0 0 0。代码如下:

class Solution {
 public:
  double frogPosition(int n, vector<vector<int>>& edges, int t, int target) {
    unordered_map<int, vector<int>> g;
    for (auto& e : edges) {
      g[e[0]].push_back(e[1]);
      g[e[1]].push_back(e[0]);
    }
    return dfs(1, -1, t, 1.0, g, target);
  }
	
  // t为从u出发,还要走多少步;p是从1跳到u的概率
  double dfs(int u, int from, int t, double p,
             unordered_map<int, vector<int>>& g, int target) {
    if (!t) {
      if (u == target) return p;
      return 0;
    }

    int cnt = g[u].size();
    if (u != 1) cnt--;

    if (!cnt) {
      if (u == target) return p;
      return 0;
    }

    double res = 0;
    for (int v : g[u]) {
      if (v == from) continue;
	  if ((res = dfs(v, u, t - 1, p / cnt, g, target)) > 0) return res;
    }

    return 0;
  }
};

时空复杂度 O ( n ) O(n) O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值