题目地址:
https://leetcode.com/problems/number-of-ways-to-split-a-string/description/
给定一个非空长 n n n的 01 01 01字符串 s s s,欲将其分为 3 3 3个非空子串,使得这 3 3 3个子串含 1 1 1的个数相等。问方案数。
统计一下 s s s中一共多少个 1 1 1,假设有 c c c个 1 1 1,如果 3 ∤ c 3\nmid c 3∤c那显然无解,返回 0 0 0;如果 c = 0 c=0 c=0,则问题相当于问在 n − 1 n-1 n−1个空里选两个空有多少个方法,方案数为 ( n − 1 ) ( n − 2 ) 2 \frac{(n-1)(n-2)}{2} 2(n−1)(n−2);如果 c > 0 c>0 c>0,那么我们需要找到两端的两个字符串的边界的位置,设 s [ 0 : c 1 ] s[0:c_1] s[0:c1]是最短的含 c / 3 c/3 c/3个 1 1 1的前缀,设其后紧跟着 k 1 k_1 k1个 0 0 0,再设 s [ c 2 : ] s[c_2:] s[c2:]是最短的含 c / 3 c/3 c/3个 1 1 1的后缀,设其前紧跟着 k 2 k_2 k2个 0 0 0,则两个隔板需要放在这两段 0 0 0里,每段可以放的位置是 k 1 + 1 , k 2 + 1 k_1+1,k_2+1 k1+1,k2+1,所以方案数就是 ( k 1 + 1 ) ( k 2 + 1 ) (k_1+1)(k_2+1) (k1+1)(k2+1)。代码如下:
class Solution {
public:
int numWays(string s) {
const int MOD = 1e9 + 7;
int n = s.size(), cnt = 0;
for (char &ch : s) cnt += ch - '0';
if (cnt % 3) return 0;
if (!cnt) return ((long)(n - 1) * (n - 2) / 2) % MOD;
cnt /= 3;
int x[2];
for (int i = 0, c = 0; i < n; i++) {
c += s[i] - '0';
if (c == cnt || c == cnt * 2) {
int j = i + 1;
while (j < n && s[j] == '0') j++;
x[c / cnt - 1] = j - i - 1;
i = j - 1;
}
}
return ((long)(x[0] + 1) * (x[1] + 1) % MOD);
}
};
时间复杂度 O ( n ) O(n) O(n),空间 O ( 1 ) O(1) O(1)。