【Leetcode】1573. Number of Ways to Split a String

题目地址:

https://leetcode.com/problems/number-of-ways-to-split-a-string/description/

给定一个非空长 n n n 01 01 01字符串 s s s,欲将其分为 3 3 3个非空子串,使得这 3 3 3个子串含 1 1 1的个数相等。问方案数。

统计一下 s s s中一共多少个 1 1 1,假设有 c c c 1 1 1,如果 3 ∤ c 3\nmid c 3c那显然无解,返回 0 0 0;如果 c = 0 c=0 c=0,则问题相当于问在 n − 1 n-1 n1个空里选两个空有多少个方法,方案数为 ( n − 1 ) ( n − 2 ) 2 \frac{(n-1)(n-2)}{2} 2(n1)(n2);如果 c > 0 c>0 c>0,那么我们需要找到两端的两个字符串的边界的位置,设 s [ 0 : c 1 ] s[0:c_1] s[0:c1]是最短的含 c / 3 c/3 c/3 1 1 1的前缀,设其后紧跟着 k 1 k_1 k1 0 0 0,再设 s [ c 2 : ] s[c_2:] s[c2:]是最短的含 c / 3 c/3 c/3 1 1 1的后缀,设其前紧跟着 k 2 k_2 k2 0 0 0,则两个隔板需要放在这两段 0 0 0里,每段可以放的位置是 k 1 + 1 , k 2 + 1 k_1+1,k_2+1 k1+1,k2+1,所以方案数就是 ( k 1 + 1 ) ( k 2 + 1 ) (k_1+1)(k_2+1) (k1+1)(k2+1)。代码如下:

class Solution {
 public:
  int numWays(string s) {
    const int MOD = 1e9 + 7;
    int n = s.size(), cnt = 0;
    for (char &ch : s) cnt += ch - '0';
    if (cnt % 3) return 0;

    if (!cnt) return ((long)(n - 1) * (n - 2) / 2) % MOD;

    cnt /= 3;
    int x[2];
    for (int i = 0, c = 0; i < n; i++) {
      c += s[i] - '0';
      if (c == cnt || c == cnt * 2) {
        int j = i + 1;
        while (j < n && s[j] == '0') j++;
        x[c / cnt - 1] = j - i - 1;
        i = j - 1;
      }
    }

    return ((long)(x[0] + 1) * (x[1] + 1) % MOD);
  }
};

时间复杂度 O ( n ) O(n) O(n),空间 O ( 1 ) O(1) O(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值