题目地址:
https://www.luogu.com.cn/problem/P1546
题目背景:
Farmer John 被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场。当然,他需要你的帮助。
题目描述:
FJ已经给他的农场安排了一条高速的网络线路,他想把这条线路共享给其他农场。为了用最小的消费,他想铺设最短的光纤去连接所有的农场。
你将得到一份各农场之间连接费用的列表,你必须找出能连接所有农场并所用光纤最短的方案。每两个农场间的距离不会超过
1
0
5
10^5
105。
输入格式:
第一行农场的个数
N
N
N(
3
≤
N
≤
100
3 \leq N \leq 100
3≤N≤100)。
接下来是一个
N
×
N
N \times N
N×N的矩阵,表示每个农场之间的距离。理论上,他们是
N
N
N行,每行由
N
N
N个用空格分隔的数组成,实际上,由于每行
80
80
80个字符的限制,因此,某些行会紧接着另一些行。当然,对角线将会是
0
0
0,因为不会有线路从第
i
i
i个农场到它本身。
输出格式:
只有一个输出,其中包含连接到每个农场的光纤的最小长度。
稠密图最小生成树问题,可以用Prim算法。代码如下:
#include <iostream>
#include <cstring>
using namespace std;
const int N = 110, INF = 0x3f3f3f3f;
int n;
int g[N][N];
int dist[N];
bool vis[N];
int prim() {
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
int res = 0;
for (int i = 1; i <= n; i++) {
int u = -1;
for (int j = 1; j <= n; j++)
if (!vis[j] && (!~u || dist[j] < dist[u])) u = j;
if (dist[u] == INF) return -1;
vis[u] = true;
res += dist[u];
for (int j = 1; j <= n; j++)
if (!vis[j]) dist[j] = min(dist[j], g[u][j]);
}
return res;
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++) scanf("%d", &g[i][j]);
printf("%d\n", prim());
}
时空复杂度 O ( n 2 ) O(n^2) O(n2)。