【安装】Linux下安装CUDA ToolKit 11.4和cuDNN 8

省流版

注意!如果你使用的是pytorch,只需要装好CUDA,不需要装cuDNN。而且完全可以等到报错了再装CUDA,一般情况系统都已经装好CUDA Toolkit了。
除非你只装了低版本的CUDA Toolkit,却在装高版本的pytorch,否则应该不会报错。

安装CUDA Toolkit 11.4

点击这里进入官网查看CUDA Toolkit列表
根据官网指示安装,比如CUDA Toolkit 11.4的安装指令是:

# 下载安装Cuda Toolkit 11.4的安装程序
wget https://developer.download.nvidia.com/compute/cuda/11.4.4/local_installers/cuda_11.4.4_470.82.01_linux.run
# 运行安装程序,根据需要选择安装内容
sudo sh cuda_11.4.4_470.82.01_linux.run

安装cuDNN 8

安装cuDNN需要在NVIDIA官网注册一个账号,cuDNN的下载地址是:点击进入cuDNN下载官网

下载这三个:
在这里插入图片描述
然后安装这些deb文件。

# 安装deb文件
sudo dpkg -i *.deb

官网的步骤测试安装是否成功(注意make的时候用sudo)。
在这里插入图片描述
注意,cuDNN 8和之前版本的查看安装版本的方式不同。
cuDNN 8之前:

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

cuDNN 8:

cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2
可能遇到的问题:/sbin/ldconfig.real: /usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8 not a symbolic link

如果报错了/usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8,记为A。

如下方式,把你报的错建立一下符号链接:

# 建立一系列符号链接
sudo ln -sf  A.x.x A

那个.x.x自动补全就行。

可能遇到的问题:test.c:1:10: fatal error: FreeImage.h: 没有那个文件或目录

解决:

sudo apt-get install libfreeimage3 libfreeimage-dev

详细解释版

TODO

本账号所有文章均为原创,欢迎转载,请注明文章出处:https://blog.csdn.net/qq_46106285/article/details/124872886
。百度和各类采集站皆不可信,搜索请谨慎鉴别。技术类文章一般都有时效性,本人习惯不定期对自己的博文进行修正和更新,因此请访问出处以查看本文的最新版本。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shandianchengzi

谢谢你

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值