数论知识学习总结(三)


一、高斯消元

1.高斯消元解线性方程组

求解这个方程组。
下图为一个包含 m m m 个方程 n n n 个末知数的线性方程组示例:
a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m } \left.\begin{array}{c} a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\ a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\ \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\ a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m} \end{array}\right\} a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2am1x1+am2x2++amnxn=bm
样例:
{ x 1 + 2 x 2 − x 3 = 6 2 x 1 + x 2 − 3 x 3 = − 9 − x 1 − x 2 + x 3 = 7 \left\{\begin{array}{c} x_1+2x_2-x_3=6 \\ 2x_1+x_2-3x_3=-9 \\ -x_1-x_2+x_3=7 \end{array}\right. x1+2x2x3=62x1+x23x3=9x1x2+x3=7
矩阵的初等行变换:
  (1)换法变换:对换矩阵的两行。
  (2)倍法变换:用非零数乘矩阵某一行的每个元素。
  (3)消法变换:用数乘矩阵某一行的每个元素后加到另一行的对应元素上。
方程组的解:

系数矩阵: A = [ a 11 a 12 … a 1 n a 21 a 22 … a 2 n … … … … a m 1 a m 2 … a m n ] A=\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right] A=a11a21am1a12a22am2a1na2namn

增广矩阵:
R ( A , b ) = [ a 11 a 12 … a 1 n b 1 a 21 a 22 … a 2 n b 2 … … … … … a m 1 a m 2 … a m n b n ] R(A, b)=\left[\begin{array}{cccc:c}a_{11} & a_{12} & \ldots & a_{1 n} & b_{1} \\ a_{21} & a_{22} & \ldots & a_{2 n} & b_{2} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n} & b_{n}\end{array}\right] R(A,b)=a11a21am1a12a22am2a1na2namnb1b2bn

  1. 有唯一解(完美阶梯型矩阵):满秩, R ( A ) = R ( A , b ) = n R(A)=R(A,b)=n R(A)=R(A,b)=n

在这里插入图片描述

  1. 无解: R ( A ) < R ( A , b ) R(A)<R(A,b) R(A)<R(A,b)
    在这里插入图片描述
    最后一行 0 = 6 0=6 0=6,显然矛盾,即误无解!~
  2. 无穷多解: R ( A ) = R ( A , b ) < n R(A)=R(A,b)<n R(A)=R(A,b)<n
    在这里插入图片描述
    很显然, 0 = 0 0=0 0=0的话,则 x 4 x_4 x4这个未知数可以被其他未知数所替代,故有无穷多解!~

步骤
枚举每一列 c c c

  1. 先找出绝对值最大的那一行
  2. 将该行换到顶端
  3. 将该行的第一个数变为1
  4. 将下面所有行的第 c c c列消成0
  5. 从下往上将矩阵消成对角线矩阵
#include <iostream>
#include <cmath>

using namespace std;

const int N = 110;
const double eps = 1e-8;

int n;
double g[N][N];

int guass()
{
    int r, c;
    for(r = 0, c = 0; c < n; c ++ )
    {
        int t = r;
        for(int i = r; i < n; i ++ ) //找到绝对值最大的那一行
            if(fabs(g[i][c]) > fabs(g[t][c]))
                t = i;
                
        if(fabs(g[t][c]) < eps) continue;
        
        for(int i = c; i <= n; i ++ ) swap(g[t][i], g[r][i]); //交换到顶端
        
        for(int i = n; i >= c; i -- ) g[r][i] /= g[r][c];//将改行第一个数变为1
        
        for(int i = r + 1; i < n; i ++ )//将下面所有行的c列消成0
            if(fabs(g[i][c]) > eps)
                for(int j = n; j >= c; j -- )
                    g[i][j] -= g[r][j] * g[i][c];
                
        r ++ ;
    }
    
    if(r < n)
    {
        for(int i = r; i < n; i ++ )
            if(fabs(g[i][n]) > eps)
                return 1;//无解
                
        return 2;//无穷多解
    }
    
    for(int i = n - 1; i >= 0; i -- )//从下往上消成对角线矩阵
        for(int j = i + 1; j < n; j ++ )
            g[i][n] -= g[i][j] * g[j][n];
            
    return 0;
}

int main()
{
    scanf("%d", &n);
    for(int i = 0; i < n; i ++ )
        for(int j = 0; j <= n; j ++ )
            scanf("%lf", &g[i][j]);
            
    int t = guass();
    
    if(t == 1) puts("No solution");
    else if(t == 2) puts("Infinite group solutions");
    else 
    {
        for(int i = 0; i < n; i ++ )
        {
            if(fabs(g[i][n]) < eps) g[i][n] = 0;
            printf("%.2lf\n", g[i][n]);
        }
    }
    
    return 0;
}

2. 高斯消元解异或线性方程组

步骤与解线性方程组类似,不过多赘述!

#include <iostream>

using namespace std;

const int N = 110;

int a[N][N];
int n;

int gauss()
{
    int c, r;
    for(c = 0, r = 0; c < n; c ++ )
    {
        int t = r;
        for(int i = r; i < n; i ++ )//找出绝对值最大的一行
            if(a[i][c])
                t = i;
                
        if(!a[t][c]) continue;
        
        //交换绝对值最大的一行到最顶端
        for(int i = c; i <= n; i ++ ) swap(a[r][i], a[t][i]); 
        
        //从上到下进行消元
        for(int i = r + 1; i < n; i ++ ) 
            if(a[i][c])
                for(int j = c; j <= n; j ++ )
                    a[i][j] ^= a[r][j];
                    
        r ++ ;
        
    }
    
    if(r < n)
    {
        for(int i = r; i < n; i ++ )
            if(a[r][n])
                return 1;//无解
                
        return 2;//无穷多解
    }
    
    //从下到上消元
    for(int i = n - 1; i >= 0; i -- )
        for(int j = i + 1; j < n; j ++ )
            if(a[i][j])//只有a[i][j]为1的时候才进行异或运算
                a[i][n] ^= a[j][n];
            
    return 0;//唯一解
}

int main()
{
    scanf("%d", &n);
    
    for(int i = 0; i < n; i ++ )
        for(int j = 0; j < n + 1; j ++ ) 
            scanf("%d", &a[i][j]);
            
    int t = gauss();
    
    if(t == 1) puts("No solution");
    else if(t == 2) puts("Multiple sets of solutions");
    else 
    {
        for(int i = 0; i < n; i ++ ) printf("%d\n", a[i][n]);//输出答案
    }
    
    return 0;
}

二、求组合数

1. 求组合数 I

我们求组合数有一个特别的递推公式: C a b = C a − 1 b + C a − 1 b − 1 C_{a}^{b}=C_{a-1}^{b}+C_{a-1}^{b-1} Cab=Ca1b+Ca1b1
a , b a,b a,b较小时,采用递推式!
时间复杂度: O ( n 2 ) O(n^2) O(n2)
相关题目:AcWing 885. 求组合数 I

#include <iostream>

using namespace std;

const int N = 2010, mod = 1e9 + 7;

int c[N][N];

void init()
{
    for (int i = 0; i < N; i ++ )
    {
        for (int j = 0; j <= i; j ++ )
        {
            if (!j) c[i][j] = 1;
            else 
            {
                c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;
            }
        }
    }
}

int main()
{
    int n;
    scanf("%d", &n);
    
    init();//预处理
    
    while (n -- )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        printf("%d\n", c[a][b]);
    }
    
    return 0;
}

2. 求组合数 II

a , b a,b a,b的数据非常大的时候( 1 0 5 10^5 105),我们用递推的方法就会超出数组最大限度。此时我们采用定义的方式求组合数!

C a b = a ! b ! ( a − b ) ! C_{a}^{b}=\frac{a!}{b!(a-b)!} Cab=b!(ab)!a!,其实等价于求 C a b ≡ a ! ∗ i n f a c t ( b ! ) ∗ i n f a c t ( ( a − b ) ! ) C_{a}^{b}\equiv a!*infact(b!)*infact((a-b)!) Caba!infact(b!)infact((ab)!)
其中 i n f a c t ( i ) infact(i) infact(i) i i i的逆元!

相关题目链接:AcWing 886. 求组合数 II

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

typedef long long LL;

const int N = 1e5 + 10, mod = 1e9 + 7; 

int fact[N], infact[N];

int qmi(int a, int b, int p)
{
    int res = 1;
    while (b)
    {
        if(b & 1) res = (LL)res * a % p;
        a = (LL) a * a % p;
        b >>= 1;
    }
    return res;
}

int main()
{
    int n;
    scanf("%d", &n);
    
    fact[0] = infact[0] = 1;
    for (int i = 1; i < N; i ++ )
    {
        fact[i] = (LL)fact[i - 1] * i % mod;\\fact[i]:i的阶乘
        infact[i] = (LL)infact[i - 1] * qmi(i, mod - 2, mod) % mod;\\infact[i]:i的逆元的阶乘
    }
    
    while (n -- )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        printf("%d\n", (LL)fact[a] * infact[b] % mod * infact[a - b] % mod);
    }
    
    return 0;
}

3. 求组合数 III

对于模不确定的时候,我们不能用预处理的方法,我们此时采用卢卡斯定理:
对于非负整数 a , b a , b ab 和质数 p p p ,有
C a b ≡ C a   m o d   p b   m o d   p ⋅ C ⌊ a / p ⌋ ⌊ b / p ⌋ (   m o d   p ) C_{a}^{b} \equiv C_{a \bmod p}^{b \bmod p} \cdot C_{\lfloor a / p\rfloor}^{\lfloor b / p\rfloor}(\bmod p) CabCamodpbmodpCa/pb/p(modp)

AcWing 887. 求组合数 III

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

typedef long long LL;

int qmi(int a, int b, int p)
{
    LL res = 1;
    while (b)
    {
        if (b & 1) res = (LL)res * a % p;
        a = (LL)a * a % p;
        b >>= 1;
    }
    return res;
}

int C(LL a, LL b, int p)
{
    if (b > a) return 0;
    LL res = 1;
    for (int i = a; i > b; i -- ) res = (LL)res * i % p;
    
    for (int i = 1; i <= a - b; i ++ ) res = (LL)res * qmi(i, p - 2, p) % p;
    
    return res;
}

int lucas(LL a, LL b, int p)
{
    if (a < p && b < p) return C(a, b, p);
    return (LL)C(a % p, b % p, p) * lucas(a / p, b / p, p) % p;
}

int main()
{
    int n;
    scanf("%d", &n);
    while (n -- )
    {
        LL a, b, p;
        scanf("%lld%lld%lld", &a, &b, &p);
        printf("%d\n", lucas(a, b, p));
    }
    
    return 0;
}

4. 满足条件的01序列

卡特兰数是组合数学 Q Q Q 中的一种著名数列,通常用如下通项式表示(为了不与组合数 C C C 冲突,本文用 f f f 表示卡特兰数):
f ( n ) = C 2 n n n + 1 f(n)=\frac{C_{2 n}^{n}}{n+1} f(n)=n+1C2nn
在这里插入图片描述
AcWing 889. 满足条件的01序列

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

typedef long long LL;

const int N = 1e5 + 10, mod = 1e9 + 7;;


int qmi(int a, int b, int p)
{
    LL res = 1;
    while (b)
    {
        if (b & 1) res = (LL)res * a % p;
        a = (LL)a * a % p;
        b >>= 1;
    }
    return res;
}

int main()
{
    int n;
    scanf("%d", &n);
    LL res = 1;
    
    int a = 2 * n, b = n;
    for (int i = a; i > b; i -- ) res = (LL)res * i % mod;
    
    for (int i = 1; i <= b; i ++ ) res = (LL)res * qmi(i, mod - 2, mod) % mod;
    
    res = (LL)res * qmi(n + 1, mod - 2, mod) % mod;
    
    printf("%d\n", res);
    
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nie同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值