题目链接:
传送门
Problem Description
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
3
1 2 1
1 3 2
2 3 4
4
1 2 1
1 3 4
1 4 1
2 3 3
2 4 2
3 4 5
0
Sample Output
3
5
样例示意图:
题目思路:
此题无非就是最小生成树的考察,没啥好说的。
kruskal算法参考代码:
#include <stdio.h>
#include <stdlib.h>
int n,m;
int parent[101];
typedef struct{
int v1;
int v2;
int w;
}Road,*road;
Road a[5050];
void init()
{
int i;
for(i=1;i<=n;i++)
parent[i]=i;
}
int find(int x)
{
if(x==parent[x])
return x;
else
return parent[x]=find(parent[x]);
}
int cmp(const void *a,const void *b)
{
road pa=(road)a;
road pb=(road)b;
int num1=pa->w;
int num2=pb->w;
return num1-num2;
}
int kruskal()
{
int i,sum=0;
for(i=0;i<m;i++)
{
int A=find(a[i].v1);
int B=find(a[i].v2);
if(A!=B)
{
parent[A]=B;
sum+=a[i].w;
}
}
return sum;
}
int main()
{
int i;
while(scanf("%d",&n)&&n!=0)
{
init();
m=n*(n-1)/2;
for(i=0;i<m;i++)
{
scanf("%d%d%d",&a[i].v1,&a[i].v2,&a[i].w);
}
qsort(a,m,sizeof(Road),cmp);
printf("%d\n",kruskal());
}
return 0;
}
prim算法参考代码:
#include <stdio.h>
#include <string.h>
#define INF 65535
int n,m;
int map[101][101];
int visited[101];
int dist[101];
void init()
{
int i,j;
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
map[i][j]=INF;
}
}
int prim(int s)
{
memset(visited,0,sizeof(visited));
int i,j,sum=0;
for(i=1;i<=n;i++)
dist[i]=map[s][i];
visited[s]=1;
for(i=1;i<n;i++)
{
int min=INF,pos;
for(j=1;j<=n;j++)
{
if(visited[j]==0&&dist[j]<min)
{
min=dist[j];
pos=j;
}
}
sum+=min;
visited[pos]=1;
for(j=1;j<=n;j++)
{
if(visited[j]==0&&dist[j]>map[pos][j])
dist[j]=map[pos][j];
}
}
return sum;
}
int main()
{
int i,x,y,z;
while(scanf("%d",&n)&&n!=0)
{
m=n*(n-1)/2;
init();
for(i=0;i<m;i++)
{
scanf("%d%d%d",&x,&y,&z);
map[x][y]=map[y][x]=z;
}
printf("%d\n",prim(1));
}
return 0;
}