在WPS中部署AI引擎 | Office AI助手插件——使用LM Studio中的本地大模型

一、LM Studio下载安装

1. LM Studio的下载安装及修改镜像文件等详细步骤可参考此链接:

LM Studio下载安装及修改镜像文件详细步骤!!!

2. 打开LM Studio界面,再点击左侧“放大镜”可进行搜索模型。

在这里插入图片描述

3. 选择好合适的模型点击右下角绿色按钮“Download”下载即可。

在这里插入图片描述

4. 下载完成后进行测试运行:点击上方“选择要加载的模型”。

在这里插入图片描述

5. 此处会显示你已经下载好的模型,选中一个模型->加载模型,就可以开始进行对话了。

### 集成LM StudioOffice 为了实现Office应用程序与LM Studio之间的AI功能集成,可以考虑通过开发自定义插件或脚本来桥接两者的功能。具体方法涉及利用LM Studio作为本地大型语言模型(LLM)运行环境,并借助API或其他接口使Office能够访问这些资源。 #### 使用Python编写自动化脚本连接OfficeLM Studio 对于熟悉编程的人来说,在Windows环境下可以通过`pywin32`库操作Microsoft Office组件并与外部程序交互。下面是一个简单的例子来展示如何启动LM Studio并传递文档内容给它处理: ```python import os from win32com.client import Dispatch def process_with_lm_studio(doc_path): # 启动Word应用实例 word_app = Dispatch('Word.Application') try: doc = word_app.Documents.Open(os.path.abspath(doc_path)) text_content = "" for paragraph in doc.Paragraphs(): text_content += paragraph.Range.Text # 这里假设有一个函数send_to_lm_studio用于发送文本到LM Studio进行处理 processed_result = send_to_lm_studio(text_content) # 将返回的结果写回到原文件或者其他地方... result_doc = word_app.Documents.Add() result_doc.Content.InsertAfter(processed_result) result_doc.SaveAs(r"C:\path\to\saved\result.docx") finally: doc.Close(SaveChanges=False) word_app.Quit() def send_to_lm_studio(text_data): # 此处需根据实际情况设计具体的通信机制 pass ``` 此代码片段展示了基本框架,实际项目中还需要解决诸如错误处理、安全性考量等问题[^1]。 #### 利用宏命令创建更紧密的集成体验 另一种方式是在Excel或Word内部使用VBA(Visual Basic for Applications),即所谓的“宏”。这种方法允许用户无需离开当前工作界面就能触发特定任务执行。例如,可以在菜单栏添加按钮链接至预设好的宏指令集,从而简化日常办公流程中的复杂操作。 然而值得注意的是,由于安全原因,默认情况下许多企业级部署会禁用宏功能;因此实施前应评估潜在风险并采取适当措施加以防范[^2]。 #### 安装专用客户端以增强互操作性 除了上述技术手段外,还可以探索是否有现成的支持多平台协作的应用程序可供选用。某些第三方开发者可能已经提供了可以直接安装于个人电脑上的解决方案,使得像WPS那样轻松接入各种类型的AI服务成为现实。这类工具通常具备图形化配置选项,降低了普通用户的入门门槛[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值