LM Studio本地部署大模型超详细步骤!!!

一、LM Studio下载安装

LM Studio下载安装

软件下载网址:https://lmstudio.ai/,根据自己的操作系统选择对应的版本下载安装即可。

二、 在LM Studio安装文件中修改镜像

在LM Studio安装后,直接运行软件,在里面搜索大模型的话,会发现无法搜索到结果✘✘✘
是因为LM Studio中模型的搜素和下载,需要访问:https://huggingface.co/, 这个网站在国内无法正常访问。为了解决这个问题,可通过访问镜像站点来下载模型文件
即:将程序安装文件中所有的 “huggingface.co” 替换成 “hf-mirror.com”

配置步骤如下:

1、右键点击LM Studio图标,“打开文件所在的位置”。

LM Studio安装位置

2、用编辑器(VScode或Sublime)打开文件夹“locales”和“resources”,
### 使用 LM Studio本地环境部署大型语言模型 #### 准备工作 为了成功利用LM Studio本地环境中部署大型语言模型,需先完成软件安装以及获取必要的硬件资源。确保计算机配置满足最低需求,包括足够的内存、存储空间及推荐使用的操作系统版本[^1]。 #### 安装 LM Studio 下载并安装最新版的LM Studio应用程序。该程序支持Windows, macOS 和 Linux多个平台。按照官方文档中的指导步骤操作即可顺利完成安装过程[^2]。 #### 导入预训练模型 启动LM Studio之后,在图形界面上找到导入功能选项。这里可以选择从网络上自动加载或是手动上传已有的预训练模型文件到指定位置保存备用。对于离线环境下,则提前准备好相应的模型权重文件以便后续加载使用。 #### 配置参数与优化设置 进入高级设置页面调整各项超参以适应具体应用场景的要求。这一步骤涉及到对GPU/CPU加速的支持选择、批处理大小设定等重要方面。合理配置这些参数有助于提高推理效率和效果表现。 #### 运行测试实例 一切准备就绪后,便可以尝试输入一些简单的提示词来进行初步验证了。观察输出结果的质量如何,并据此进一步微调前面提到的各项配置直至满意为止。此外还可以借助内置工具分析性能瓶颈所在之处进而采取针对性措施加以改进。 ```python # 示例代码用于展示如何通过API接口发送请求给已经部署好的LLM服务端口 import requests response = requests.post( "http://localhost:8080/predict", json={"prompt": "Once upon a time"} ) print(response.json()) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值