迷宫问题,最短路径算法,非递归循环实现

本文探讨了迷宫问题的解法,指出递归在时间复杂度不是O(logn)时可能导致效率低下和爆栈风险。推荐使用循环解决此类问题,并给出了一个具体的迷宫问题循环解法示例,通过动态调整方向优先级进行路径搜索,避免死路并最终找到解决方案。同时,展示了两个不同迷宫的求解过程和结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

迷宫问题多数解法都是使用递归,但递归对于算法还是有要求的,如果
时间复杂度不是O(log n)那么还是不建议使用
因为当问题规模较大时,每次递归无法将规模指数级缩减
那么总递归次数就会很多,会有爆栈的风险
例如

def fn(x):
	if x == 1:
    	return 1
    return fn(x - 1) * x

fn(1000)

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 4, in fn
  File "<stdin>", line 4, in fn
  File "<stdin>", line 4, in fn
  [Previous line repeated 995 more times]
  File "<stdin>", line 2, in fn
RecursionError: maximum recursion depth exceeded in comparison

所以,能用循环解决的还是用循环吧

迷宫问题的使用循环的解法

# 设置一个迷宫,1代表可走,0代表不可走
mig = [
    [0, 0, 0, 0, 0, 0, 0],
    [0, 1, 0, 0, 1, 1, 0],
    [0, 1, 1, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值