1994. 好子集的数目题解
题目来源:1994. 好子集的数目
2022.02.22 每日一题
每日一题专栏地址:LeetCode 每日一题题解更新中❤️💕
今天是一道困难题目,乍一看题目,觉得没什么思路
那就一起逐步分析分析吧
给定一个数组nums
,找到nums
中是好子集的子集有多少个
好子集:子集中所有元素的乘积可以由一个
或多个
不相同的质数相乘得到
那我们就可以分析一下,这个好子集中的元素的乘积可以由质数相乘得到,说明这个好子集之中要么不包含质数、要么包含的质数也可以由不相同的质数相乘得到
那么我们来统计一下,在本题的数据范围里(1 <= nums[i] <= 30
),有多少符合条件的数
第一组:1 不是质数,但是可以与满足条件的好子集进行组队
1
第二组:纯质数
2, 3, 5, 7, 11, 13, 17, 19, 23, 29
第三组:可以由不同质数相乘得到的数
6, 10, 14, 15, 21, 22, 26, 30
可以发现一共有18 + 1
个
那么思路就出来了,我们可以使用动态规划
进行求解
class Solution {
public:
// 创建 mod 用来取余
int mod = 1e9 + 7;
// 声明质数数组
vector<int> prime = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
int numberOfGoodSubsets(vector<int> nums) {
// 声明结果变量统计最后的答案
long long res = 0;
// 因为一共有 10 个质数,用二进制表示,一共有 1024 种方式
vector<long long> dp(1025);
// dp数组初始化
dp[0] = 1;
// 本题的数据范围 1 <= nums[i] <= 30
// 因此最大为 30
vector<int> count(31);
// 统计 nums 中各个数字的个数
for (int num: nums)
count[num]++;
// 遍历nums中除 1 以外的每一个数
// 因为
for (int num = 2; num <= 30; ++num) {
// 当前数不存在,当前数带有平方数 跳过
// 排除掉不满足的数字
if (count[num] == 0 || num % 4 == 0 || num % 9 == 0 || num % 25 == 0)
continue;
// 对10个质数做处理,如果当前数能被质数整除,则记录进maskForNum
int maskForNum = 0;
for (int i = 0; i < 10; ++i)
// 对每个质数进行与或运算,统计出现的频率
if (num % prime[i] == 0)
maskForNum |= (1 << i);
// 遍历每一种状态
for (int state = 0; state < 1024; ++state) {
// maskForNum中已经存在了其中一个质数,跳过
if ((maskForNum & state) > 0) continue;
//这里可能会溢出,所以dp数组类型为long
// 更新当前状态的的好子集个数
dp[maskForNum | state] =
(dp[maskForNum | state] + ((count[num] % mod) * (dp[state] % mod) % mod)) % mod;
}
}
// dp[0]不算进去
for (int i = 1; i < 1024; ++i) res = (res + dp[i]) % mod;
// 有多少个1,最后的结果就乘以2的多少次方
for (int i = 0; i < count[1]; ++i) res = (res * 2) % mod;
return (int) res;
}
};
class Solution {
// 创建 mod 用来取余
int mod = 1000000007;
// 声明质数数组
int[] prime = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
public int numberOfGoodSubsets(int[] nums) {
// 声明结果变量统计最后的答案
long res = 0;
// 因为一共有 10 个质数,用二进制表示,一共有 1024 种方式
long[] dp = new long[1025];
// dp数组初始化
dp[0] = 1;
// 本题的数据范围 1 <= nums[i] <= 30
// 因此最大为 30
int[] count = new int[31];
// 统计 nums 中各个数字的个数
for (int num : nums)
count[num]++;
// 遍历nums中除 1 以外的每一个数
// 因为
for (int num = 2; num <= 30; ++num) {
// 当前数不存在,当前数带有平方数 跳过
// 排除掉不满足的数字
if (count[num] == 0 || num % 4 == 0 || num % 9 == 0 || num % 25 == 0) continue;
// 对10个质数做处理,如果当前数能被质数整除,则记录进maskForNum
int maskForNum = 0;
for (int i = 0; i < 10; ++i)
// 对每个质数进行与或运算,统计出现的频率
if (num % prime[i] == 0) maskForNum |= (1 << i);
// 遍历每一种状态
for (int state = 0; state < 1024; ++state) {
// maskForNum中已经存在了其中一个质数,跳过
if ((maskForNum & state) > 0) continue;
//这里可能会溢出,所以dp数组类型为long
// 更新当前状态的的好子集个数
dp[maskForNum | state] = (dp[maskForNum | state] + ((count[num] % mod) * (dp[state] % mod) % mod)) % mod;
}
}
// dp[0]不算进去
for (int i = 1; i < 1024; ++i) res = (res + dp[i]) % mod;
// 有多少个1,最后的结果就乘以2的多少次方
for (int i = 0; i < count[1]; ++i) res = (res * 2) % mod;
return (int) res;
}
}
结语:
我的思路只想到了代码之前,这道题目的状态转移方程我没有想到,
感谢 livorth 的【1994. 好子集的数目】状态压缩动态规划较详细的思路
看完大佬的题解,整理了一下代码以及注释,主要的思路来自于大佬