layerGraph
是 MATLAB 中用于构建、操作和可视化神经网络层结构的工具。它以图的形式表示深度学习网络,其中每个节点代表一个网络层,边则表示层之间的连接。layerGraph
主要用于设计具有多个输入和多个输出的网络,并支持层之间的复杂连接模式。
然而,从 R2024a 开始,layerGraph
对象已不再推荐使用,建议改用 dlnetwork
对象。尽管如此,layerGraph
仍然是一个非常有用的工具,尤其是在网络设计和层间连接时。
layerGraph
对象的主要特性
-
表示网络结构:
layerGraph
对象将神经网络架构表示为有向无环图(DAG),每个节点(层)通过边(连接)与其他节点相连。它使得层之间的复杂连接结构变得更加直观和易于操作。 -
支持多个输入和输出:与常见的网络设计不同,
layerGraph
允许您创建具有多个输入和多个输出的复杂网络架构。 -
层连接管理:您可以通过
connectLayers
和disconnectLayers
等函数,灵活地连接和断开层之间的连接。这对于设计不同类型的网络结构(如残差网络、跳跃连接等)非常有用。
layerGraph
的常见操作
1. 创建 layerGraph
对象
您可以通过几种不同的方式创建 layerGraph
对象:
-
空的
layerGraph
对象:lgraph = layerGraph;
这会创建一个空的层图对象,您可以逐步向其中添加层。
-
基于层数组创建
layerGraph
:layers = [ imageInputLayer([28 28 1]) convolution2dLayer(3,16) batchNormalizationLayer reluLayer fullyConnectedLayer(10) softmaxLayer classificationLayer ]; lgraph = layerGraph(layers);
这样,您就根据一个层数组创建了一个完整的网络架构。
-
从已存在的网络创建
layerGraph
:lgraph = layerGraph(pretrainedNet);
如果您已经有一个训练好的网络(如
SeriesNetwork
或DAGNetwork
),可以从它中提取layerGraph
对象。
2. 添加层
您可以使用 addLayers
函数向现有的 layerGraph
对象中添加新层:
newLayer = fullyConnectedLayer(100, 'Name', 'fc_new');
lgraph = addLayers(lgraph, newLayer);
3. 连接层
您可以使用 connectLayers
函数来连接层。在连接层时,您需要指定源层和目标层,或源层的输出名称和目标层的输入名称。
lgraph = connectLayers(lgraph, 'conv_1', 'fc_new');
4. 断开层连接
使用 disconnectLayers
函数可以断开两层之间的连接:
lgraph = disconnectLayers(lgraph, 'conv_1', 'fc_new');
5. 替换层
您可以通过 replaceLayer
函数替换层。例如,您可以用一个新的卷积层替换一个现有的卷积层。
newConvLayer = convolution2dLayer(5, 32, 'Padding', 'same');
lgraph = replaceLayer(lgraph, 'conv_1', newConvLayer);
6. 绘制网络图
您可以通过 plot
函数将 layerGraph
可视化,这样可以直观地查看网络的层次结构和层之间的连接关系。
plot(lgraph);
7. 网络连接示例:残差连接
一个常见的使用 layerGraph
的场景是构建具有残差连接的网络。残差连接可以有效地解决梯度消失和爆炸问题,尤其在深层网络中。以下是如何使用 layerGraph
创建一个带有残差连接的网络:
layers = [
imageInputLayer([28 28 1])
convolution2dLayer(3, 16, 'Padding', 'same')
batchNormalizationLayer
reluLayer
convolution2dLayer(3, 16, 'Padding', 'same')
batchNormalizationLayer
reluLayer
additionLayer(2, 'Name', 'add')
fullyConnectedLayer(10)
softmaxLayer
classificationLayer
];
lgraph = layerGraph(layers);
% 添加跳跃连接
lgraph = connectLayers(lgraph, 'relu_1', 'add/in1');
lgraph = connectLayers(lgraph, 'relu_3', 'add/in2');
% 绘制层图
figure;
plot(lgraph);
8. 使用 dlnetwork
进行训练
layerGraph
对象允许您设计网络架构,而 dlnetwork
对象则用于实现自定义训练循环。可以使用 dlnetwork
将网络图转换为一个可训练的网络,并执行训练。
net = dlnetwork(lgraph);
layerGraph
和 dlnetwork
对比
尽管 layerGraph
对象功能丰富,但 MATLAB 推荐使用 dlnetwork
对象,因为它提供了更高效的训练和推理功能,支持自定义训练循环、支持更多网络架构以及优化的计算性能。以下是两者的对比:
操作 | layerGraph | dlnetwork |
---|---|---|
网络构建 | 通过层数组或已存在的网络创建层图 | 通过层数组或现有的网络对象创建 |
图形可视化 | 使用 plot 函数可视化层连接 | 使用 plot 可视化网络结构 |
自定义训练循环 | 不支持直接自定义训练循环 | 完全支持自定义训练循环 |
支持的网络架构 | 适用于较简单的架构 | 支持更复杂的网络架构,如动态图、LSTM等 |
训练和推理性能 | 适用于小型模型 | 针对大规模数据和复杂任务优化 |
量化支持 | 不支持量化 | 支持量化和训练时量化 |
总结
layerGraph
是一个非常有用的工具,可以帮助用户设计和操作深度学习网络的层级结构,特别适用于构建复杂的、具有多个输入输出的网络。它提供了丰富的功能,如添加层、连接层、替换层以及绘制网络架构。然而,MATLAB 已不推荐使用 layerGraph
,而是推荐使用更为强大的 dlnetwork
对象,后者支持更多类型的网络架构、更高效的训练和推理过程。
dlnetwork
对象简介
dlnetwork
是 MATLAB 中的一个深度学习网络对象,用于指定神经网络的架构。它允许创建、训练和预测深度神经网络,并支持多种自定义功能。与传统的 LayerGraph
对象不同,dlnetwork
对象通过直接操作层的属性和连接提供更高的灵活性,并且不再依赖于图形化表示。自 MATLAB R2024a 起,推荐使用 dlnetwork
来替代 LayerGraph
。
dlnetwork
对象的创建和用法
1. 创建 dlnetwork
对象
您可以通过以下几种方式创建 dlnetwork
对象:
-
创建空的
dlnetwork
对象:net = dlnetwork;
这会创建一个没有任何层的空网络,适合从头开始构建网络。
-
根据层数组创建网络:
layers = [ imageInputLayer([28 28 1]) convolution2dLayer(5,16,Padding='same') batchNormalizationLayer reluLayer fullyConnectedLayer(10) softmaxLayer classificationLayer ]; net = dlnetwork(layers);
使用层数组创建一个完整的网络,并自动初始化学习参数。
-
使用输入数据初始化:
X = rand(28,28,1,100); % 示例输入数据 net = dlnetwork(layers, X);
通过示例输入数据(
X
)来初始化网络,自动计算学习参数的大小。 -
初始化标志:
net = dlnetwork(layers, Initialize=false);
创建一个空的网络,但不初始化学习参数,可以在后续阶段进行手动初始化。
2. dlnetwork
属性
dlnetwork
对象有多个重要属性,用于存储和管理网络的各个方面:
- Layers:存储网络的层,类型为
Layer
数组。 - Connections:存储层之间的连接,类型为表格,包含源层和目标层的对应关系。
- Learnables:网络的学习参数,包括卷积核权重、全连接层权重等。
- State:网络的状态参数,存储在表格中,包括用于保持中间状态的参数(例如 LSTM 层的隐藏状态和细胞状态)。
- InputNames:网络输入的名称,用于定义多个输入的顺序。
- OutputNames:网络输出的名称,用于定义多个输出的顺序。
- Initialized:指示网络是否已初始化,初始化为 1 (true) 时,网络可以用于训练和推理。
3. 常见方法和函数
-
addLayers:向网络中添加新的层。
newLayer = convolution2dLayer(3, 64); net = addLayers(net, newLayer);
-
connectLayers:连接两层之间的连接。
net = connectLayers(net, 'conv1', 'conv2');
-
removeLayers:从网络中移除某些层。
net = removeLayers(net, 'conv2');
-
initialize:初始化网络的学习参数。
net = initialize(net);
-
predict:用于推理和预测,通过前向传播计算网络的输出。
Y = predict(net, X);
-
forward:用于训练时的前向传播。
Y = forward(net, X);
-
resetState:重置网络中的状态参数(例如 LSTM 层的状态)。
net = resetState(net);
4. 自定义训练循环和优化
dlnetwork
支持自定义训练循环,可以通过 dlgradient
和 dlfeval
进行自动微分和损失计算。以下是一个基本的自定义训练循环示例:
% 训练数据
XTrain = rand(28,28,1,100);
YTrain = rand(10, 100);
% 自定义训练循环
for epoch = 1:numEpochs
for i = 1:numMiniBatch
% 获取当前小批量数据
XBatch = XTrain(:,:,:,i);
YBatch = YTrain(:,i);
% 计算预测
[Y, gradients] = dlfeval(@modelGradients, net, XBatch, YBatch);
% 更新参数
net = sgdmupdate(net, gradients);
end
end
5. 复杂的神经网络设计
您可以创建复杂的多输入多输出网络,包含残差连接、并行路径等。
% 定义简单的网络层
layers = [
imageInputLayer([28 28 1])
convolution2dLayer(5, 16)
batchNormalizationLayer
reluLayer
convolution2dLayer(3, 32)
fullyConnectedLayer(10)
softmaxLayer
];
% 创建网络
net = dlnetwork(layers);
% 添加并行路径
parallelLayer = [
convolution2dLayer(1, 64)
batchNormalizationLayer
reluLayer
];
net = addLayers(net, parallelLayer);
net = connectLayers(net, 'relu_1', 'parallelConv');
6. 示例:构建神经网络
创建一个神经网络并添加多个分支:
% 定义输入层
layers = [
imageInputLayer([28 28 1], Normalization="none")
convolution2dLayer(5, 16, Padding="same")
batchNormalizationLayer
reluLayer
convolution2dLayer(3, 32, Padding="same", Stride=2)
batchNormalizationLayer
reluLayer
convolution2dLayer(3, 32, Padding="same")
batchNormalizationLayer
reluLayer
additionLayer(2, Name="add")
fullyConnectedLayer(10)
softmaxLayer(Name="softmax")];
net = dlnetwork(layers);
% 添加并行路径
parallelLayers = [
convolution2dLayer(1, 32, Stride=2, Name="conv_skip")
batchNormalizationLayer
reluLayer(Name="relu_skip")];
net = addLayers(net, parallelLayers);
net = connectLayers(net, "relu_1", "conv_skip");
net = connectLayers(net, "relu_skip", "add/in2");
% 可视化网络
figure
plot(net)
dlnetwork
和 LayerGraph
对比
特性 | dlnetwork | LayerGraph |
---|---|---|
灵活性 | 高,适用于复杂架构和自定义训练循环 | 灵活性较低,适用于简单的网络设计和可视化 |
支持的网络架构 | 支持更多复杂架构,如并行路径、LSTM、GAN 等 | 主要用于简单的序列式网络,复杂架构较为困难 |
自定义训练循环 | 完全支持自定义训练循环 | 不支持自定义训练循环 |
层级图表示 | 不依赖图形化表示,直接操作网络层属性 | 提供图形化层图显示和层之间的连接 |
性能优化 | 支持 GPU 加速和高效的自定义优化流程 | 无 GPU 加速支持,主要依赖于传统训练流程 |
总结
dlnetwork
是 MATLAB 中用于表示和操作深度学习网络的核心对象,支持从零开始构建网络、进行自定义训练和优化循环、实现复杂网络结构等。它为深度学习任务提供了高度的灵活性,特别适合需要自定义功能和优化的应用场景。
addLayers
函数简介
addLayers
是 MATLAB 中用于向神经网络(尤其是 dlnetwork
对象)添加层的函数。通过使用该函数,您可以在已存在的网络中添加新的层。层被按顺序连接,并且它们的层名称必须唯一,不能与现有网络中的层名称重复。
函数语法
netUpdated = addLayers(net, layers)
- net:当前的
dlnetwork
对象,包含已有的网络架构。 - layers:一个
Layer
数组,包含要添加到网络中的新层。 - netUpdated:更新后的
dlnetwork
对象,包含原始网络的所有层以及添加的层。
功能描述
addLayers
函数用于将一组新的网络层按顺序添加到现有的神经网络中。该函数确保新添加的层的名称唯一,并与现有网络层连接。添加的层不会改变现有网络中的任何层或连接,新的网络对象是原网络的更新版本。
示例
示例 1: 创建并扩展简单神经网络
- 创建一个空的
dlnetwork
对象并添加层:
net = dlnetwork;
layers = [
imageInputLayer([32 32 3])
convolution2dLayer(3,16,Padding="same")
batchNormalizationLayer
reluLayer];
net = addLayers(net, layers);
- 绘制网络架构:
figure
plot(net)
示例 2: 从头开始构建双输出神经网络
- 定义网络架构并添加不同的层:
numClasses = 10;
numResponses = 1;
net = dlnetwork;
layers = [
imageInputLayer([28 28 1],Normalization="none")
convolution2dLayer(5,16,Padding="same")
batchNormalizationLayer
reluLayer(Name="relu_1")
convolution2dLayer(3,32,Padding="same",Stride=2)
batchNormalizationLayer
reluLayer
convolution2dLayer(3,32,Padding="same")
batchNormalizationLayer
reluLayer
additionLayer(2,Name="add")
fullyConnectedLayer(numClasses)
softmaxLayer(Name="softmax")];
net = addLayers(net, layers);
- 添加跳过连接(skip connection):
layers = [
convolution2dLayer(1,32,Stride=2,Name="conv_skip")
batchNormalizationLayer
reluLayer(Name="relu_skip")];
net = addLayers(net, layers);
net = connectLayers(net, "relu_1", "conv_skip");
net = connectLayers(net, "relu_skip", "add/in2");
- 添加回归输出层:
layers = fullyConnectedLayer(numResponses, Name="fc_2");
net = addLayers(net, layers);
net = connectLayers(net, "add", "fc_2");
- 绘制完整的网络架构:
figure
plot(net)
重要注意事项
- 层名称唯一性:添加的层必须具有唯一的名称。如果
layers
中的层名称与现有网络中的层名称冲突,addLayers
会抛出错误。 - 初始化:
addLayers
不会自动初始化网络的学习参数。如果需要初始化学习参数,可以使用initialize
函数。 - 量化信息:
addLayers
不会保留量化信息。如果输入网络是量化网络,输出网络不会包含量化信息。
版本历史记录
- R2024a:推荐使用
dlnetwork
对象,不推荐使用LayerGraph
对象。addLayers
函数可以在dlnetwork
上使用,允许灵活地扩展网络结构。
相关函数
removeLayers
:从网络中移除指定的层。replaceLayer
:替换网络中的指定层。connectLayers
:连接网络中的层。disconnectLayers
:断开网络中的层连接。plot
:可视化神经网络架构。
总结
addLayers
函数是 MATLAB 中用于灵活构建和扩展深度神经网络的重要工具,允许您在已有网络基础上添加新层,同时保留网络的原有架构和功能。
removeLayers
函数简介
removeLayers
函数用于从一个 dlnetwork
对象中删除指定的层及其连接。删除层后,网络的结构将更新,删除的层及其与其他层的连接也将被移除。
函数语法
netUpdated = removeLayers(net, layerNames)
- net:当前的
dlnetwork
对象,包含已定义的网络架构。 - layerNames:指定要删除的层的名称,可以是一个字符向量、字符串数组或字符向量元胞数组。
- netUpdated:返回更新后的
dlnetwork
对象,其中移除了指定的层及其连接。
功能描述
removeLayers
函数从给定的神经网络中删除指定名称的层,并且移除与这些层相关的连接。删除层后,返回一个更新的神经网络对象。删除的层不会影响其他层和网络结构。
示例
示例 1: 创建并移除神经网络的层
- 创建一个简单的神经网络,并添加一些层:
net = dlnetwork;
layers = [
imageInputLayer([28 28 1])
convolution2dLayer(3,16,Padding="same")
batchNormalizationLayer
reluLayer];
net = addLayers(net, layers);
figure
plot(net) % 绘制网络图
- 移除
batchNormalizationLayer
层及其连接:
net = removeLayers(net, "batchNormalizationLayer");
figure
plot(net) % 绘制更新后的网络图
示例 2: 删除多个层
- 假设我们有多个层,并想要删除其中的两个层:
net = dlnetwork;
layers = [
imageInputLayer([28 28 1])
convolution2dLayer(3,16,Padding="same")
batchNormalizationLayer
reluLayer];
net = addLayers(net, layers);
% 删除 'batchNormalizationLayer' 和 'reluLayer'
net = removeLayers(net, {"batchNormalizationLayer", "reluLayer"});
figure
plot(net) % 绘制删除后的网络图
输入参数
- net:当前的
dlnetwork
对象,指定了当前的神经网络架构。 - layerNames:一个字符向量、字符串数组或字符向量元胞数组,指定要删除的层的名称。如果要删除多个层,可以将它们的名称以数组或元胞数组的形式传递。
输出参数
- netUpdated:删除指定层后的更新网络,返回一个未初始化的
dlnetwork
对象。要初始化网络中的学习参数,可以使用initialize
函数。
注意事项
- 量化信息:
removeLayers
不会保留量化信息。如果输入网络是量化网络,输出网络将不包含量化信息。 - 未初始化的网络:该函数返回的是未初始化的网络,如果需要进行预测或训练,必须调用
initialize
函数进行初始化。 - 层名称唯一性:确保删除的层名称在网络中是唯一的,并且层名称在网络中已经存在。
相关函数
addLayers
:向神经网络中添加新层。replaceLayer
:替换神经网络中的层。connectLayers
:在神经网络中连接层。disconnectLayers
:断开神经网络中的层连接。plot
:可视化神经网络架构。
总结
removeLayers
函数是一个用于在 dlnetwork
对象中删除指定层及其连接的工具,它有助于动态地修改神经网络架构,适应不同的需求。在神经网络中删除不再需要的层时,记得使用该函数来更新网络结构。
replaceLayer
函数简介
replaceLayer
函数用于替换 dlnetwork
对象中的指定层。通过此函数,你可以用新的层替换现有网络中的某一层,并根据需要重新连接层。
函数语法
netUpdated = replaceLayer(net, layerName, layers)
netUpdated = replaceLayer(net, layerPath, layers)
netUpdated = replaceLayer(___, ReconnectBy=mode)
- net:当前的
dlnetwork
对象。 - layerName 或 layerPath:要替换的层的名称或路径。
- layerName:用于直接指定网络中要替换的层名称。
- layerPath:指定嵌套层的路径(适用于嵌套在
networkLayer
或自定义层的dlnetwork
中的层)。
- layers:新的网络层,可以是一个
Layer
数组,定义了替代层的结构。 - mode:指定如何重新连接层的方式。可以选择:
"name"
:通过输入和输出的名称重新连接层。"order"
:根据层的输入输出顺序重新连接层。
功能描述
replaceLayer
函数用于替换指定层并重新连接新的层到网络中。此功能特别适用于修改已有网络架构(例如替换激活层或添加新的正则化层)。此函数同时提供了两种方法来重新连接层——基于名称或基于层的顺序。
示例
示例 1: 替换简单网络中的层
- 定义一个简单的神经网络并绘制其图形:
net = dlnetwork;
layers = [
imageInputLayer([28 28 1], Name="input")
convolution2dLayer(3, 16, Padding="same")
reluLayer(Name="relu1")
additionLayer(2, Name="add")
fullyConnectedLayer(10)
softmaxLayer
];
net = addLayers(net, layers);
net = connectLayers(net, "input", "add/in2");
figure
plot(net)
- 使用
replaceLayer
函数将relu1
层替换为一个批量归一化层后接一个 Leaky ReLU 层:
layers = [
batchNormalizationLayer
leakyReluLayer(0.1)
];
net = replaceLayer(net, "relu1", layers);
figure
plot(net)
示例 2: 替换嵌套网络中的层
- 定义一个包含嵌套层的网络,并绘制网络图:
net = dlnetwork;
layers = [
lstmLayer(100, OutputMode="sequence")
dropoutLayer(0.2)
];
lstmDropoutLayer = networkLayer(layers);
layers = [
sequenceInputLayer(3)
lstmDropoutLayer
lstmDropoutLayer
fullyConnectedLayer(10)
softmaxLayer
];
net = addLayers(net, layers);
figure
plot(net)
- 查找并修改第一个 LSTM 层,然后替换它:
tempLSTMLayer = getLayer(net, "subnet_1/lstm");
tempLSTMLayer.InputWeightsInitializer = "zeros";
tempLSTMLayer.RecurrentWeightsInitializer = "zeros";
tempLSTMLayer.BiasInitializer = "ones";
tempLSTMLayer.Name = "modifiedLSTM";
net = replaceLayer(net, "subnet_1/lstm", tempLSTMLayer);
输入参数
- net:
dlnetwork
对象,表示当前的神经网络。 - layerName:要替换的层名称,可以是字符向量或字符串标量。
- layerPath:嵌套层的路径,适用于网络层中嵌套的层,使用层路径的形式,例如
"networkLayerName/layerName"
。 - layers:新的层,定义了要替换成的新层。
- mode:指定层如何重新连接,选择
"name"
(通过名称连接)或"order"
(通过顺序连接)。
输出参数
- netUpdated:返回更新后的
dlnetwork
对象,新的层已经替换旧的层。返回的网络是未初始化的,需使用initialize
函数初始化学习参数。
注意事项
replaceLayer
函数不会保留量化信息。如果输入网络是量化网络,输出的网络将不包含量化信息。- 使用
replaceLayer
后,网络仍然是未初始化的,因此你需要手动调用initialize
函数进行初始化。 - 对于嵌套层的替换,确保提供正确的层路径。
相关函数
addLayers
:向网络中添加新层。removeLayers
:从网络中移除层。connectLayers
:在网络中连接层。disconnectLayers
:在网络中断开层连接。plot
:可视化网络架构。
总结
replaceLayer
函数非常适合在已有的神经网络中进行架构调整,例如替换某个层,修改某个网络模块,或进行特定的改进。它提供了灵活的层替换和重新连接方式,帮助你高效地修改深度学习模型。
connectLayers
函数简介
connectLayers
函数用于在 dlnetwork
对象中连接源层和目标层。这是深度学习模型构建中必不可少的操作,它帮助您通过指定层的输入和输出名称来连接不同的层。
函数语法
netUpdated = connectLayers(net, s, d)
- net:当前的
dlnetwork
对象。 - s:连接的源层,指定为字符向量或字符串标量。如果源层有多个输出,则使用
"layerName/outputName"
这样的格式。 - d:连接的目标层,指定为字符向量或字符串标量。如果目标层有多个输入,则使用
"layerName/inputName"
这样的格式。
功能描述
connectLayers
用于将源层的输出与目标层的输入连接起来。这个功能是构建深度神经网络时必不可少的,因为它帮助您定义不同层之间的数据流向。
示例
示例 1: 创建并连接相加层
net = dlnetwork;
% 创建相加层,指定该层有两个输入
layer = additionLayer(2, 'Name', 'add');
net = addLayers(net, layer);
% 向网络中添加两个 ReLU 层,并连接到相加层
layer = reluLayer('Name', 'relu1');
net = addLayers(net, layer);
net = connectLayers(net, 'relu1', 'add/in1');
layer = reluLayer('Name', 'relu2');
net = addLayers(net, layer);
net = connectLayers(net, 'relu2', 'add/in2');
% 可视化更新后的网络
figure;
plot(net);
示例 2: 定义双输出神经网络并连接跳过连接
numClasses = 10;
numResponses = 1;
net = dlnetwork;
% 定义主分支的网络层
layers = [
imageInputLayer([28 28 1], Normalization="none")
convolution2dLayer(5, 16, Padding="same")
batchNormalizationLayer
reluLayer(Name="relu_1")
convolution2dLayer(3, 32, Padding="same", Stride=2)
batchNormalizationLayer
reluLayer
convolution2dLayer(3, 32, Padding="same")
batchNormalizationLayer
reluLayer
additionLayer(2, Name="add")
fullyConnectedLayer(numClasses)
softmaxLayer(Name="softmax")
];
net = addLayers(net, layers);
% 添加跳过连接
layers = [
convolution2dLayer(1, 32, Stride=2, Name="conv_skip")
batchNormalizationLayer
reluLayer(Name="relu_skip")
];
net = addLayers(net, layers);
net = connectLayers(net, "relu_1", "conv_skip");
net = connectLayers(net, "relu_skip", "add/in2");
% 添加回归输出层
layers = fullyConnectedLayer(numResponses, Name="fc_2");
net = addLayers(net, layers);
net = connectLayers(net, "add", "fc_2");
% 可视化网络
figure;
plot(net);
输入参数
- net:
dlnetwork
对象,表示当前的神经网络。 - s:源层,指定为字符向量或字符串标量。若源层有多个输出,使用
"layerName/outputName"
的格式。 - d:目标层,指定为字符向量或字符串标量。若目标层有多个输入,使用
"layerName/inputName"
的格式。
输出参数
- netUpdated:返回更新后的
dlnetwork
对象,包含了源层和目标层的连接。返回的网络是未初始化的,需要使用initialize
函数初始化网络的学习参数。
注意事项
connectLayers
函数不会保留量化信息。如果输入网络是量化网络,则输出的网络将不包含量化信息。- 连接层时,要确保源层的输出名称与目标层的输入名称匹配。
相关函数
addLayers
:向网络中添加新层。removeLayers
:从网络中移除层。replaceLayer
:替换网络中的层。disconnectLayers
:断开网络中两层的连接。plot
:可视化神经网络架构。
总结
connectLayers
是深度学习网络构建中的关键函数,它允许你通过层的输入和输出名称来连接不同的网络层。通过该函数,你可以精确地控制网络的结构,连接不同的层以实现更复杂的模型架构。
disconnectLayers
函数简介
disconnectLayers
函数用于从 dlnetwork
对象中断开两层之间的连接。此操作从当前网络中移除了指定源层和目标层之间的连接,但保留网络中其他的层和连接。它有助于在神经网络设计中修改和调整层的连接结构。
函数语法
netUpdated = disconnectLayers(net, s, d)
- net:当前的
dlnetwork
对象,表示神经网络。 - s:源层,指定为字符向量或字符串标量。如果源层有多个输出,使用
"layerName/outputName"
的格式。 - d:目标层,指定为字符向量或字符串标量。如果目标层有多个输入,使用
"layerName/inputName"
的格式。
功能描述
disconnectLayers
用于断开源层和目标层之间的连接,返回一个更新后的 dlnetwork
对象。源层和目标层仍然保留在网络中,但它们之间的连接被移除。此功能可以帮助用户在构建神经网络时,调整连接结构或执行其他层级操作。
示例
示例 1: 断开层连接
% 创建一个空的神经网络
net = dlnetwork;
% 定义层并添加到网络中
layers = [
imageInputLayer([28 28 1])
convolution2dLayer(3,16,Padding="same")
batchNormalizationLayer
reluLayer
];
net = addLayers(net, layers);
figure
plot(net) % 绘制原始网络
% 断开 'conv' 层和 'batchnorm' 层之间的连接
net = disconnectLayers(net, "conv", "batchnorm");
% 绘制更新后的网络
figure
plot(net)
在这个例子中,网络中连接了 conv
层和 batchnorm
层,使用 disconnectLayers
后,这两层之间的连接被移除。
输入参数
- net:
dlnetwork
对象,表示当前的神经网络。 - s:源层,指定为字符向量或字符串标量。如果源层有多个输出,使用
"layerName/outputName"
的格式。 - d:目标层,指定为字符向量或字符串标量。如果目标层有多个输入,使用
"layerName/inputName"
的格式。
输出参数
- netUpdated:返回更新后的
dlnetwork
对象,其中不再包含源层与目标层之间的连接。
注意事项
disconnectLayers
不会保留量化信息。如果输入网络是量化网络,输出网络将不包含量化信息。- 该函数只断开指定的源层和目标层之间的连接,其他层的结构和连接不会受到影响。
相关函数
addLayers
:向网络中添加新层。removeLayers
:从网络中移除层。replaceLayer
:替换网络中的层。connectLayers
:将源层和目标层连接。plot
:可视化神经网络架构。
总结
disconnectLayers
是用于修改神经网络层连接的函数,它帮助您从网络中断开指定层之间的连接。这对于网络设计中的修改和调试非常有用,可以帮助您灵活调整网络结构。
plot
函数简介
plot
函数用于可视化神经网络架构,显示网络中的各层及它们之间的连接。这对于理解和分析神经网络结构非常有用,尤其是在调试和优化网络时。
函数语法
plot(net)
- net:一个
dlnetwork
对象,表示深度神经网络。
功能描述
plot
函数绘制神经网络的图形表示,展示网络的各层及它们之间的连接。这个图形可以帮助用户更直观地理解网络架构,特别是在复杂的网络中。
示例
示例 1: 绘制简单神经网络
% 创建一个空的神经网络
net = dlnetwork;
% 定义网络层
layers = [
imageInputLayer([32 32 3]) % 输入层,大小为32x32x3的图像
convolution2dLayer(3,16,Padding="same") % 卷积层
batchNormalizationLayer % 批归一化层
reluLayer(Name="relu1") % ReLU 激活层
convolution2dLayer(3,16,Padding="same",Stride=2) % 卷积层
batchNormalizationLayer % 批归一化层
reluLayer % ReLU 激活层
additionLayer(2,Name="add") % 相加层
];
% 将层添加到网络中
net = addLayers(net, layers);
% 连接 layers
net = connectLayers(net, "relu1", "add/in2");
% 绘制网络
figure
plot(net)
此代码创建了一个简单的神经网络,包含输入层、卷积层、批归一化层、ReLU 激活层和相加层。使用 plot
函数可视化该网络的结构。
输入参数
- net:
dlnetwork
对象,表示神经网络。
注意事项
plot
仅用于绘制层和连接的图形,适用于较小规模的网络架构。- 对于更复杂的网络和交互式的可视化,推荐使用
deepNetworkDesigner
工具,它提供了更强大的功能来分析和设计神经网络架构。
版本历史
- 在 R2017b 中推出。
- 从 R2024a 开始,不推荐使用
DAGNetwork
、SeriesNetwork
和LayerGraph
对象,而是建议使用dlnetwork
对象。
总结
plot
函数是一个非常有用的工具,可以帮助你可视化和分析神经网络的结构。对于小型网络,plot
提供了清晰的层级结构图,而对于复杂的网络架构,推荐使用 deepNetworkDesigner
进行更详细的分析。