用Java实现迷宫问题和八皇后问题

主要用到了递归的思想,代码学习自B站尚硅谷的数据结构视频

迷宫问题

package recursive;

/**
 * @author lzy
 * @create 2022-02-27 9:19
 * 迷宫回溯问题
 */
public class MiGong {
    public static void main(String[] args) {
        //用一个二维数组模拟迷宫
        int[][] map = createMap();
        showMap(map);
        setWay(map, 1, 1);
        System.out.println("-------------");
        showMap(map);
    }
    /**
     * 生成地图
     */
    public static int[][] createMap(){
        //创建一个二维数组模拟迷宫
        int[][] map = new int[8][7];
        //使用1表示墙,上下全部置1
        for (int i = 0; i < 7; i++) {
            map[0][i] = 1;
            map[7][i] = 1;
        }
        //左右置1
        for (int i = 0; i < 8; i++) {
            map[i][0] = 1;
            map[i][6] = 1;
        }
        //设置挡板
        map[3][1] = 1;
        map[3][2] = 1;
        return map;
    }

    /**
     * 输出地图
     */
    public static void showMap(int[][] map){
        //输出地图
        for (int i = 0; i < 8; i++) {
            for (int j = 0; j < 7; j++) {
                System.out.print(map[i][j] + " ");
            }
            System.out.println("");
        }
    }

    /**
     * 使用递归来给小球寻路
     * @param map 地图
     * @param i 从哪个位置开始找
     * @param j 从哪个位置开始找
     * @return 如果找到通路,就返回true,否则返回false
     * 小球从(1,1)出发,如果能到(6,5)位置,说明通路能找到
     * map[i][j]表示0时,表示该点未走过;为1表示墙,无法通过;2表示通路可以走;3表示该位置已走过,但不通
     * 策略:下->右->上->左,如果该点不通再回溯
     */
    public static boolean setWay(int[][] map, int i, int j){
        //递归终止条件,表示终点已找到
        if (map[6][5] == 2){
            return true;
        }else if (map[i][j] == 0){
            //先假设该点为通路
            map[i][j] = 2;
            //行进策略:下->右->上->左
            if (setWay(map, i + 1, j)){
                return true;
            }else if (setWay(map, i, j + 1)){
                return true;
            }else if (setWay(map, i - 1, j)){
                return true;
            }else if (setWay(map, i, j - 1)){
                return true;
            }
            //上下左右都不通,说明此路为死路
            map[i][j] = 3;
            return false;
        }
        //map[i][j] = 1,2,3 的情况
        return false;
    }
}

八皇后问题

package recursive;

/**
 * @author lzy
 * @create 2022-02-27 10:26
 * 八皇后问题
 * 在8×8 格的国际象棋上摆放八个皇后,使其不能互相攻击
 * 即:任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法(92)
 */
public class Queen8 {
    /**
     * 定义皇后的个数(8)和棋盘大小(8*8)
     */
    static int max = 8;
    static int[] arr = new int[max];
    static int count = 0;
    public static void main(String[] args) {
        check(0);
        System.out.println(count);
    }

    /**
     * 输出皇后摆放的位置
     */
    public static void showQueen(){
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + " ");
        }
        System.out.println("");
    }

    /**
     * 当放置第n个皇后时,需检测该皇后是否和前面的皇后冲突
     * n从0开始
     */
    public static boolean judge(int n){
        for (int i = 0; i < n; i++) {
            //判断是否在同一列
            if (arr[n] == arr[i]){
                return false;
            }
            //同一斜线(横坐标之差和纵坐标之差相等,形成等腰直角三角形)
            if (Math.abs(n - i) == Math.abs(arr[n] - arr[i])){
                return false;
            }
        }
        return true;
    }

    /**
     * 放置第n个皇后
     * n从0开始
     */
    public static void check(int n){
        //递归终止条件,n==8,说明前面8个皇后已放好(注意n从0开始)
        if (n == max){
            count++;
            showQueen();
            return;
        }
        //依次放入皇后,并判断是否冲突
        for (int i = 0; i < max; i++) {
            //从第1列开始放
            arr[n] = i;
            //判断皇后放到第i列时是否冲突
            if (judge(n)) {
                //不冲突,接着放n+1个皇后
                check(n + 1);
            }
            //如果冲突,进行下一轮循环(i+1),皇后进行下一个位置的尝试
        }
    }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值