最小生成树之Kruskal(C++)

最小生成树

最小生成树:简单来说就是,带权图中遍历所有点所经过边权之和最小;
带权图:边赋以权值的图称为带权图(生成树的各边的权值总和称为该树的权);
注:最小生成树中不形成回路,联通n个点恰巧经过n-1条边

Kruskal算法

算法思想

贪心选取最短的边来组成一颗生成树(借助并查集实现);

算法简介

kruskal算法:取出带权图中所有带权边,并对它们进行排序,依次取出权值最小的边;
若此边与之前选取的边(存放在集合T中)无法形成回路,则将该边存入集合T中;
直至建到一颗生成树(即T中存入n-1条边);

算法复杂度

kruskal算法复杂度只与网中边的条数有关,与顶点个数无关,因此时间复杂度主要由排序方法决定,
因此当网的顶点个数较多、而边的条数较少时,使用克鲁斯卡尔算法构造最小生成树效果较好;
(复杂度O(m*lg(m)适用于稀疏图)

在这里插入图片描述

算法实现

例题(模板题,出自luoguP3366):
题为luoguP3366最小生成树
存储方式(结构体存储):

struct lq{
    int x,y,z;
}f[200005];

排序部分(就直接用c++的快排了):

bool cmp(lq a,lq b){
    return a.z<b.z;
}

sort(f,f+m,cmp);//以z的大小为标准对结构体进行排序

并查集部分(炒鸡普通。。。)

int pre[5005];
int father(int x){//找根结点
    int root=x;
    while(pre[root]!=-1){
        root=pre[root];
    }
    return root;
}

bool un(int x,int y){//判断回路(若x,y是否在同一个集合中,不是则将结点y放入x所在的树中)
    int x_root=father(x);
    int y_root=father(y);
    if(x_root==y_root){
        return 0;
    }
    else{
        pre[x_root]=y_root;
        return 1;
    }
}

完整代码(C++):

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<unordered_map>
#include<string>
#include<stack>
typedef long long ll;
using namespace std;

int n,m;//节点数,边数
int ans=0;//最小生成树边权和
int tot=0;//已经选取的边数
struct lq{
    int x,y,z;
}f[200005];
int pre[5005];//并查集数组
 
bool cmp(lq a,lq b){
    return a.z<b.z;
}

int father(int x){//查找根节点
    int root=x;
    while(pre[root]!=-1){
        root=pre[root];
    }
    return root;
}

bool un(int x,int y){
    int x_root=father(x);
    int y_root=father(y);
    if(x_root==y_root){
        return 0;
    }
    else{
        pre[x_root]=y_root;
        return 1;
    }
}

int main()
{
    memset(pre,-1,sizeof(pre));//数组清零
    cin>>n>>m;
    for(int i=0;i<m;i++){
        cin>>f[i].x>>f[i].y>>f[i].z;
    }//读入数据
    sort(f,f+m,cmp);//以z的大小为标准进行升序排序
    for(int i=0;i<m;i++){//依次取出权值最小的边
        if(un(f[i].x,f[i].y)){//如果该边的两个结点不在一个集合中,即添加该边未产生回路
            ans+=f[i].z;//加入边权值
            tot++;//边数加一
            if(tot==n-1){//当边数为n-1时,输出权值和
                cout<<ans;
                return 0;
            }
        }
    }
    cout<<"orz";//出循环则tot<n-1,即该图不连通,输出“orz”
    return 0;
}
萌新第一次写博客,水平较低,有错误的话欢迎各位大锅指出( •̀ ω •́ )✧
以下是使用C++实现Kruskal算法最小生成树的示例代码: ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; // 定义边的结构体 struct Edge { int src, dest, weight; }; // 定义并查集的数据结构 struct DisjointSet { int *parent, *rank; int n; DisjointSet(int n) { this->n = n; parent = new int[n]; rank = new int[n]; // 初始化每个节点的父节点为自身,秩为0 for (int i = 0; i < n; i++) { parent[i] = i; rank[i] = 0; } } // 查找节点的根节点 int find(int u) { if (u != parent[u]) { parent[u] = find(parent[u]); } return parent[u]; } // 合并两个集合 void merge(int x, int y) { int rootX = find(x); int rootY = find(y); if (rank[rootX] < rank[rootY]) { parent[rootX] = rootY; } else if (rank[rootX] > rank[rootY]) { parent[rootY] = rootX; } else { parent[rootY] = rootX; rank[rootX]++; } } }; // Kruskal算法最小生成树 void kruskal(vector<Edge>& edges, int n) { // 按照边的权重进行排序 sort(edges.begin(), edges.end(), [](const Edge& a, const Edge& b) { return a.weight < b.weight; }); vector<Edge> result; // 存储最小生成树的边 DisjointSet ds(n); for (const auto& edge : edges) { int src = edge.src; int dest = edge.dest; // 判断两个节点是否在同一个集合中 if (ds.find(src) != ds.find(dest)) { result.push_back(edge); ds.merge(src, dest); } } // 输出最小生成树的顶点集合和边的集合 cout << "顶点集合:"; for (int i = 0; i < n; i++) { cout << i << " "; } cout << endl; cout << "边的集合:"; for (const auto& edge : result) { cout << "(" << edge.src << ", " << edge.dest << ") "; } cout << endl; } int main() { int n = 6; // 图的顶点数 // 定义图的边集合 vector<Edge> edges = { {0, 1, 4}, {0, 2, 3}, {1, 2, 1}, {1, 3, 2}, {2, 3, 4}, {3, 4, 2}, {4, 5, 6} }; kruskal(edges, n); return 0; } ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值