蓝桥杯 Day13 java组 剪枝

暴力法往往比较低效,把时间浪费在很多不必要的计算上。

剪枝是一个比喻:把不会产生答案的,或不必要的枝条“剪掉”。而剪枝的关键在于剪枝的判断:剪什么枝、在哪里减。剪枝是搜索常用的优化手段,常常能把指数级的复杂度,优化到近似多项式的复杂度。

  • BFS的主要剪枝技术是判重,如果搜索到某一层时,出现重复的状态,就剪枝。
  • DFS的剪枝技术较多,有可行性剪枝、最优性剪枝、搜索顺序剪枝、排除等效冗余、记忆化搜索等等:

  1. 可行性剪枝:对当前状态进行检查,如果当前条件不合法就不再继续,直接返回
  2. 搜索顺序剪枝:搜索树有多个层次和分支,不同的搜索顺序会产生不同的搜索树形态,复杂度也相差很大。
  3. 最优性剪枝:在最优化问题的搜索过程中,如果当前花费的代价已超过前面搜索到的最优解,那么本次搜索已经没有继续进行下去的意义,此时停止对当前分支的搜索进行回溯。
  4. 排除等效冗余:搜索的不同分支,最后的结果是一样的,那么只搜一个分支就够了。
  5. 记忆化搜索:在递归的过程中,有许多分支被反复计算,会大大降低算法的执行效率。用记忆化搜索,将已经计算出来的结果保存起来,以后需要用到的时候直接取出结果,避免重复运算,从而提高了算法的效率。记忆化搜索一般在DP中。

第一题 四平方和

样例输入

12

样例输出

0 2 2 2

import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int i = 0, j = 0, k = 0, l = 0;
        int x = scanner.nextInt();
        for (i = 0; x >= i * i; i++) {
            for (j = i; x >= i * i + j * j; j++) {
                for (k = j; x >= i * i + j * j + k * k; k++) {
                    for (l = k; x >= i * i + j * j + k * k + l * l; l++) {
                        if (i * i + j * j + k * k + l * l == x) {
                            System.out.println(i + " " + j + " " + k + " " + l);
                            return;
                        }
                    }
                }
            }
        }
    }
}

第二题 剪格子

输出描述

在所有解中,包含左上角的分割区可能包含的最小的格子数目。

样例输入

3 3
10 1 52
20 30 1
1 2 3

样例输出

3
import java.util.Scanner;

public class Main {
    public static int[][] map;
    public static int[][] visited;
    public static int m;
    public static int n;
    public static int sum = 0;
    public static int min = 999999;
    public static int[][] direction = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};

    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        m = scanner.nextInt();
        n = scanner.nextInt();
        map = new int[1000][1000];
        visited = new int[1000][1000];
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                map[i][j] = scanner.nextInt();
                visited[i][j] = 0;
                sum = sum + map[i][j];
            }
        }
        dfs(0, 0, 0, 1);
        System.out.println(min);
    }

    public static void dfs(int x, int y, int temp, int k) {
        temp = temp + map[x][y];
        if (temp * 2 > sum) {
            return;
        }

        if (temp * 2 == sum) {
            if (k < min) {
                min = k;
            }
            return;
        }
        visited[x][y] = 1;
        for (int i = 0; i < direction.length; i++) {
            int x1 = x + direction[i][0];
            int y1 = y + direction[i][1];
            if (x1 >= m || y1 >= n) {
                continue;
            }
            if (x1 >= 0 && x1 < n && y1 >= 0 && y1 < m && visited[x1][y1] == 0) {
                dfs(x1, y1, temp, k+1);
            }
        }
        visited[x][y] = 0;
    }
}

写的贼慢,太菜了。 

第三题 路径之谜

样例输入

4
2 4 3 4
4 3 3 3

样例输出

0 4 5 1 2 3 7 11 10 9 13 14 15

import java.util.Scanner;
import java.util.Stack;

public class Main {
    private static int n = 0;
    private static int[] north;
    private static int[] west;
    private static int[][] map;
    private static int[][] direction = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
    private static int[][] visited;
    private static Stack<Node> stack = new Stack<Node>();
    private static int temp = 0;

    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        n = scanner.nextInt();
        north = new int[n];
        west = new int[n];
        map = new int[n][n];
        visited = new int[n][n];
        for (int i = 0; i < n; i++) {
            north[i] = scanner.nextInt();
        }
        for (int i = 0; i < n; i++) {
            west[i] = scanner.nextInt();
        }
        int temp = 0;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                map[i][j] = temp;
                visited[i][j] = 0;
                temp++;
            }
        }
        dfs(0, 0);
    }

    private static void dfs(int x, int y) {
        west[x]--;
        north[y]--;
        visited[x][y] = 1;
        int flag = 0;
        if (temp == 1) {
            return;
        }
        if (west[x] < 0 || north[y] < 0) {
            west[x]++;
            north[y]++;
            visited[x][y] = 0;
            return;
        }
        if (x == n - 1 && y == n - 1) {
            for (int i = 0; i < n; i++) {
                if (west[i] != 0 || north[i] != 0) {
                    flag = 1;
                    break;
                }
            }
            if (flag != 1) {
                temp = 1;
                Node node = new Node(x, y, map[x][y]);
                stack.push(node);
                int[] a = new int[stack.size()];
                for (int i = stack.size() - 1; !stack.isEmpty(); i--) {
                    a[i] = stack.pop().value;
                }
                for (int i = 0; i < a.length; i++) {
                    System.out.print(a[i] + " ");
                }
                return;
            }
        }
        Node node = new Node(x, y, map[x][y]);
        stack.push(node);
        for (int i = 0; i < direction.length; i++) {
            int nx = x + direction[i][0];
            int ny = y + direction[i][1];
            if (nx >= 0 && nx < n && ny >= 0 && ny < n && visited[nx][ny] == 0) {
                dfs(nx, ny);
            }
        }
        if (!stack.isEmpty()) {
            stack.pop();
        }
        visited[x][y] = 0;
        west[x]++;
        north[y]++;
    }
}

class Node {
    int x;
    int y;
    int value;

    Node(int x, int y, int value) {
        this.x = x;
        this.y = y;
        this.value = value;
    }
}

剪枝前深搜722次  剪枝后深搜54次 

第四题 分考场 

样例输入

5
8
1 2
1 3
1 4
2 3
2 4
2 5
3 4
4 5

样例输出

import java.util.*;

public class Main {
    private static int n;
    private static int m;
    private static int ans = 10000;
    private static int[][] relation;
    private static Map<Integer, List<Integer>> map = new HashMap<>();

    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        n = scanner.nextInt();
        m = scanner.nextInt();
        relation = new int[n + 1][n + 1];
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++) {
                relation[i][j] = 0;
            }
        }
        for (int i = 0; i < m; i++) {
            int a1 = scanner.nextInt();
            int a2 = scanner.nextInt();
            relation[a1][a2] = 1;
            relation[a2][a1] = 1;
        }
        List<Integer> list = new ArrayList<>();
        list.add(1);
        map.put(0, list);
        dfs(1);
        System.out.println(ans);
    }

    public static boolean checked(int i, int k) {
        for (int j = 0; j < map.get(i).size(); j++) {
            if (relation[k][map.get(i).get(j)] == 1 || relation[map.get(i).get(j)][k] == 1) {
                return false;
            }
        }
        return true;
    }

    public static void dfs(int k) {
        System.out.println("DFS");
        if (k == n + 1) {
            ans = Math.min(ans, map.size());
            return;
        }
        if (map.size() >= ans) {
            return;
        }
        for (int i = 0; i < map.size(); i++) {//对每一个考场进行遍历

            if (checked(i, k)) {//对第i个考场进行检查
                map.get(i).add(k);
                dfs(k + 1);
                map.get(i).remove(map.get(i).size() - 1);//将集合最后的元素移除
            }

            /*int flag = 0;
            List<Integer> list = map.get(i);

            for (int j = 0; j < list.size(); j++) {//对每一个考场中的每个人进行遍历
                int temp = list.get(j);
                if (relation[k][temp] == 1 || relation[temp][k] == 1) {//有关系
                    flag = 1;
                    break;
                }
            }

            if (flag == 0) {
                list.add(k);//第i个考场里没有任何一个人和k有关系,将k加入到第i号考场
                dfs(k + 1);
                list.remove(list.size() - 1);
                break;//对每个考场的遍历可以结束了
            }

            if (i == map.size()) {//到了最后一次循环 则创建新的考场
                List<Integer> list1 = new ArrayList<>();
                list1.add(k);//将第k个学生加入集合
                map.put(map.size(), list1);//将新创建的考场加入到考场里
                dfs(k + 1);
                map.remove(map.size() - 1);
            }*/
        }

        List<Integer> list = new ArrayList<>();
        list.add(k);
        map.put(map.size(), list);
        dfs(k + 1);
        map.remove(map.size() - 1);

    }

}

纯纯的鬼物题

对于第k个学生来说,即使能加入到某个教室里,也要在每个dfs()的最后。为他新建一个考场去尝试。想明白这一点就很容易写。

第五题 四阶幻方 

  1  2 15 16
 12 14  3  5
 13  7 10  4
  8 11  6  9

以及:

  1 12 13  8
  2 14  7 11
 15  3 10  6
 16  5  4  9

就可以算为两种不同的方案。

public class Main {
    private static int[][] map;
    private static int count = 0;
    private static int[] a = {9999, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};

    public static void main(String[] args) {
        map = new int[5][5];
        for (int i = 0; i < 5; i++) {
            for (int j = 0; j < 5; j++) {
                map[i][j] = 0;
            }
        }
        map[1][1] = 1;
        dfs(2, 16);
        System.out.println(count);
    }

    private static void dfs(int s, int t) {
        //System.out.println("DFS");
        if (s == 5 && map[1][1] + map[1][2] + map[1][3] + map[1][4] != 34) {
            //System.out.println(map[1][1] + " " + map[1][2] + " " + map[1][3] + " " + map[1][4]);
            return;
        }
        if (map[1][1] + map[1][2] + map[1][3] + map[1][4] == 34) {
            //System.out.println(map[1][1] + " " + map[1][2] + " " + map[1][3] + " " + map[1][4]);
        }
        if (s == 9 && map[2][1] + map[2][2] + map[2][3] + map[2][4] != 34) {
            return;
        }
        if (s == 13 && map[3][1] + map[3][2] + map[3][3] + map[3][4] != 34) {
            return;
        }
        if (s == 14 && map[1][1] + map[2][1] + map[3][1] + map[4][1] != 34) {
            return;
        }
        if (s == 14 && map[1][4] + map[2][3] + map[3][2] + map[4][1] != 34) {
            return;
        }
        if (s == 15 && map[1][2] + map[2][2] + map[3][2] + map[4][2] != 34) {
            return;
        }
        if (s == 16 && map[1][3] + map[2][3] + map[3][3] + map[4][3] != 34) {
            return;
        }
        if (s == 17 && map[1][4] + map[2][4] + map[3][4] + map[4][4] == 34 && map[1][1] + map[2][2] + map[3][3] + map[4][4] == 34 && map[4][1] + map[4][2] + map[4][3] + map[4][4] == 34) {
            count++;
            return;
        }

        for (int i = s; i <= t; i++) {
            swap(i, s);
            for (int j = 2; j <= 16; j++) {
                if (j % 4 != 0) {
                    map[j / 4 + 1][j % 4] = a[j];//赋值
                } else {
                    map[j / 4][4] = a[j];
                }
            }
            dfs(s + 1, t);
            swap(s, i);
        }
    }

    private static void swap(int i, int s) {
        int temp;
        temp = a[i];
        a[i] = a[s];
        a[s] = temp;
    }
}

 答案为416种 对16个数进行全排列  跑的很慢 不知道是不是哪块的剪枝出了问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值