【背包问题】 混合背包问题

题目来源

点我进入ACwing提交

题目

有 N 种物品和一个容量是 V 的背包。

物品一共有三类:

第一类物品只能用1次(01背包);
第二类物品可以用无限次(完全背包);
第三类物品最多只能用 s i s_i si 次(多重背包);
每种体积是 v i v_i vi,价值是 w i w_i wi

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。

s i = − 1 s_i=−1 si=1 表示第 i 种物品只能用1次;
s i = 0 s_i=0 si=0 表示第 i 种物品可以用无限次;
s i > 0 s_i>0 si>0 表示第 i 种物品可以使用 s i s_i si 次;
输出格式
输出一个整数,表示最大价值。

数据范围
0 < N , V ≤ 1000 0<N,V≤1000 0<N,V1000
0 < v i , w i ≤ 1000 0<v_i,w_i≤1000 0<vi,wi1000
− 1 ≤ s i ≤ 1000 −1≤s_i≤1000 1si1000

输入样例
4 5
1 2 -1
2 4 1
3 4 0
4 5 2
输出样例:
8

题目思路:

这个题目简单明了,就是将三种背包融合在一起了,求解最大值。
用于复习之前背包问题再好不过了。

这里我遇到了一个问题,和大家分享一下。
错误想法: 完全背包和多重背包的优化差不多吧,感觉没什么区别。
正确想法:
首先我们看完全背包的优化:
我们可以将状态转移方程展开:
f [ i ] [ j ] = m a x ( f [ i − 1 , j ] , f [ i − 1 , j − v ] + w , f [ i − 1 , j − 2 ∗ v ] + 2 ∗ w , f [ i − 1 , j − 3 ∗ v ] + 3 ∗ w , … … , f [ i − 1 , j − ⌊ j v ⌋ ∗ v ] + ⌊ j v ⌋ ∗ w ) f[i][j] = max(f[i - 1, j], f[i - 1, j - v] + w, f[i - 1, j - 2 * v] + 2 * w, f[i - 1, j - 3 * v] + 3 * w , …… , f[i - 1, j - \lfloor \frac{j}{v} \rfloor * v] + \lfloor \frac{j}{v} \rfloor * w) f[i][j]=max(f[i1,j],f[i1,jv]+w,f[i1,j2v]+2w,f[i1,j3v]+3w,,f[i1,jvjv]+vjw)
再观察另一组:
f [ i ] [ j − v ] = m a x ( f [ i − 1 , j − v ] , f [ i − 1 , j − 2 ∗ v ] + w , f [ i − 1 , j − 3 ∗ v ] + 2 ∗ w , … … , f [ i − 1 , j − ⌊ j v ⌋ ∗ v ] + ⌊ j v ⌋ − 1 ∗ w ) f[i][j - v] = max(f[i - 1, j - v], f[i - 1, j - 2 * v] + w, f[i - 1, j - 3 * v] + 2 * w , …… , f[i - 1, j - \lfloor \frac{j}{v} \rfloor * v] + \lfloor \frac{j}{v} \rfloor - 1 * w) f[i][jv]=max(f[i1,jv],f[i1,j2v]+w,f[i1,j3v]+2w,,f[i1,jvjv]+vj1w)

我们发现,第一组的后面一块与第二组只相差了一个w的值,所以可以直接写为:
f [ i ] [ j ] = m a x ( f [ i − 1 ] [ j ] , f [ i − 1 ] [ j − v ] + w ) f[i][j] = max(f[i - 1][j], f[i - 1][ j - v] + w) f[i][j]=max(f[i1][j],f[i1][jv]+w)

然后我们再来看多重背包的优化就会发现不同的地方。
我们使用同样的方法, 将多重背包的状态方程展开:
f [ i ] [ j ] = m a x ( f [ i − 1 , j ] , f [ i − 1 , j − v ] + w , f [ i − 1 , j − 2 ∗ v ] + 2 ∗ w , f [ i − 1 , j − 3 ∗ v ] + 3 ∗ w , … … , f [ i − 1 , j − s ∗ v ] + s ∗ w ) f[i][j] = max(f[i - 1, j], f[i - 1, j - v] + w, f[i - 1, j - 2 * v] + 2 * w, f[i - 1, j - 3 * v] + 3 * w , …… , f[i - 1, j - s * v] + s * w) f[i][j]=max(f[i1,j],f[i1,jv]+w,f[i1,j2v]+2w,f[i1,j3v]+3w,,f[i1,jsv]+sw)

这时候我们再观察这个
f [ i ] [ j − v ] = m a x ( f [ i − 1 , j − v ] , f [ i − 1 , j − 2 ∗ v ] + w , f [ i − 1 , j − 3 ∗ v ] + 2 ∗ w , … … , f [ i − 1 , j − s ∗ v ] + ( s − 1 ) ∗ w , f [ i − 1 , j − ( s + 1 ) ∗ v ] + s ∗ w ) f[i][j - v] = max(f[i - 1, j - v], f[i - 1, j - 2 * v] + w, f[i - 1, j - 3 * v] + 2 * w , …… , f[i - 1, j - s * v] + (s - 1) * w , f[i - 1, j - (s + 1) * v] + s * w) f[i][jv]=max(f[i1,jv],f[i1,j2v]+w,f[i1,j3v]+2w,,f[i1,jsv]+(s1)w,f[i1,j(s+1)v]+sw)
就会发现下面这一组多了后面这一块,性质就不一样了,也就是不能用这个方法做了。

所以得要换种方法,从个数入手,通过进制转换,我们可以知道任意的数字都可以由二的倍数的数字组成,根据这个进行优化。

AC代码

#include<bits/stdc++.h>
using namespace std;

#define _for(i, a, b) for (int i = (a); i < (b); ++i)
#define _rep(i, a, b) for (int i = (a); i <= (b); ++i)
#define For(i, a, b) for (int i = (a); i >= (b); --i)
#define debug(a) cout << #a << " = " << a << endl;
#define mod(x) (x) % MOD
#define ENDL "\n"
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;

const int N = 1000 + 10;
int f[N];

int main()
{
#ifdef LOCAL
    freopen("data.in", "r", stdin);
#endif
    ios::sync_with_stdio(false); // 取消cin与stdin 的同步
    cout.tie(0), cin.tie(0);

    int n, m;
    cin >> n >> m;
    
    _rep(i, 1, n) {
        int w, v, s;
        cin >> v >> w >> s;

        if (!s) _rep(j, v, m) f[j] = max(f[j], f[j - v] + w);
        else {
            if (s == -1) s = 1;
            for (int k = 1; k <= s; k *= 2) {
                For(j, m, k * v) f[j] = max(f[j], f[j - k * v] + k * w);
                s -= k;
            }
            if (s) For(j, m, s * v) f[j] = max(f[j], f[j - s * v] + s * w);
        }
    }
    cout << f[m] << endl;
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值