《矩阵理论》笔记 3 — 矩阵范数理论及其应用

矩阵范数理论及其应用

一、向量范数

1、范数与赋范线性空间

如果线性空间 V V V 中的任一向量 x x x ,都对应一个实值函数 f ( x ) f(x) f(x),记为 ∣ ∣ x ∣ ∣ ||x|| ∣∣x∣∣ ,并满足以下三个条件(称为范数公理):
(1) 正定性: x ≠ 0 x\neq 0 x=0时, ∣ ∣ x ∣ ∣ > 0 ||x||>0 ∣∣x∣∣>0 x = 0 x=0 x=0时, ∣ ∣ x ∣ ∣ = 0 ||x||=0 ∣∣x∣∣=0
(2) 齐次性: ∣ ∣ a x ∣ ∣ = ∣ a ∣   ∣ ∣ x ∣ ∣ ||ax||=|a| \ ||x|| ∣∣ax∣∣=a ∣∣x∣∣ a ∈ K a \in K aK x ∈ V x \in V xV
(3) 三角不等式: ∣ ∣ x + y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ ||x+y||\leq||x||+||y|| ∣∣x+y∣∣∣∣x∣∣+∣∣y∣∣ x , y ∈ V x,y \in V x,yV
则称 ∣ ∣ x ∣ ∣ ||x|| ∣∣x∣∣ V V V 上向量 x x x范数 V V V 称为赋范线性空间

  • 对于赋范线性空间 V V V 上任意的 x x x ,定义实值函数 $ f (x) =|| x|| $,则 f ( x ) f (x) f(x) 为 $V $ 上的连续函数,即 x → x 0 x \rightarrow x_0 xx0 时, f ( x ) → f ( x 0 ) f (x)\rightarrow f (x_0 ) f(x)f(x0),其中 x 0 ∈ V x_0 \in V x0V
  • P P P 为 $n $ 阶可逆矩阵,对于 n n n 维向量 x ∈ C n x \in C^n xCn ∣ ∣ x ∣ ∣ 1 ||x||_1 ∣∣x1 C n C^n Cn 中的一个范数,令 ∣ ∣ x ∣ ∣ 2 = ∣ ∣ P x ∣ ∣ 1 ||x||_2 = ||Px||_1 ∣∣x2=∣∣Px1 ,则 ∣ ∣ x ∣ ∣ 2 ||x||_2 ∣∣x2 也为 C n C^n Cn 中的范数。
  • ∣ ∣ x ∣ ∣ a ||x||_a ∣∣xa C n C^n Cn 中的一个范数,令 ∣ ∣ x ∣ ∣ b = r   ∣ ∣ x ∣ ∣ a ||x||_b = r \ ||x||_a ∣∣xb=r ∣∣xa r ∈ R + r\in R^+ rR+ ,则 ∣ ∣ x ∣ ∣ b ||x||_b ∣∣xb 也为 C n C^n Cn 中的范数。
  • 内积空间是赋范线性空间,但赋范线性空间不一定构成内积空间。

2、 n n n 维向量的 p − p - p 范数 ( 1 ≤ p ≤ ∞ 1 \leq p \leq \infty 1p)

对于 n n n 维向量 x = ( ξ 1 , ξ 2 , . . . , ξ n ) T ∈ C n x=(\xi_1,\xi_2,...,\xi_n)^T \in C^n x=(ξ1,ξ2,...,ξn)TCn

  • ∣ ∣ x ∣ ∣ 1 = ∑ i = 1 n ∣ ξ i ∣ ||x||_1= \sum\limits_{i=1}^{n} |\xi_i| ∣∣x1=i=1nξi 称为 x x x 1 − 1- 1范数,记为 ∣ ∣ x ∣ ∣ 1 ||x||_1 ∣∣x1,由此诱导出的距离称为街区距离。
  • ∣ ∣ x ∣ ∣ 2 = ( ∑ i = 1 n ∣ ξ i ∣ 2 ) 1 2 ||x||_2= (\sum\limits_{i=1}^{n} |\xi_i|^2)^{\frac{1}{2}} ∣∣x2=(i=1nξi2)21 称为 x x x 2 − 2- 2范数,记为 ∣ ∣ x ∣ ∣ 2 ||x||_2 ∣∣x2 ,由此诱导出的距离称为欧氏距离。若是复数向量,那么2范数为其内积的开方,即共轭转置与本身相乘,再开方。
  • ∣ ∣ x ∣ ∣ ∞ = ( max ⁡ 1 ≤ i ≤ n ∣ ξ i ∣ ) ||x||_\infty = ( \max \limits_{1 \leq i \leq n} |\xi_i| ) ∣∣x=(1inmaxξi) 称为 x x x ∞ − \infty- 范数,记为 ∣ ∣ x ∣ ∣ ∞ ||x||_\infty ∣∣x ,由此诱导出的距离称为棋盘距离(也称契比雪夫距离 Chebyshev distance)。
  • ∣ ∣ x ∣ ∣ p = ( ∑ i = 1 n ∣ ξ i ∣ p ) 1 p ||x||_p= (\sum\limits_{i=1}^{n} |\xi_i|^p)^{\frac{1}{p}} ∣∣xp=(i=1nξip)p1称为 x x x p − p - p范数,记为 ∣ ∣ x ∣ ∣ p ||x||_p ∣∣xp
    • ∣ ∣ x ∣ ∣ P = ∣ ∣ P x ∣ ∣ 2 = x H P H P x ||x||_P = ||Px||_2 = \sqrt{x^HP^HPx} ∣∣xP=∣∣Px2=xHPHPx 称之为加权范数或椭圆范数,其中 P P P 为可逆矩阵

在平面上,斜向量 P Q PQ PQ 2 − 2- 2范数、 ∞ − \infty- 范数和 1 − 1- 1范数分别是直角三角形 Δ P R Q \Delta PRQ ΔPRQ 斜边 P Q PQ PQ 的长度、较长的直角边长度和两直角边长度之和。

3、范数的等价性

对任意 x ∈ V x\in V xV,存在正数 C 1 C_1 C1 C 2 C_2 C2满足不等式 C 1   ∣ ∣ x ∣ ∣ β   ≤ ∣ ∣ x ∣ ∣ α ≤ C 2   ∣ ∣ x ∣ ∣ β C_1 \ ||x||_{\beta} \ \leq ||x||_{\alpha } \leq C_2 \ ||x||_\beta C1 ∣∣xβ ∣∣xαC2 ∣∣xβ 的两种范数称为是等价的。

  • 对于 n n n 维向量 x ∈ C n x \in C^n xCn ,总成立着
    ∣ ∣ x ∣ ∣ 2   ≤ ∣ ∣ x ∣ ∣ 1 ≤ n   ∣ ∣ x ∣ ∣ 2 ||x||_2 \ \leq ||x||_1 \leq \sqrt{n} \ ||x||_2 ∣∣x2 ∣∣x1n  ∣∣x2
    ∣ ∣ x ∣ ∣ ∞ ≤ ∣ ∣ x ∣ ∣ 2 ≤ n   ∣ ∣ x ∣ ∣ ∞ ||x||_\infty \leq ||x||_2 \leq \sqrt{n} \ ||x||_\infty ∣∣x∣∣x2n  ∣∣x
    ∣ ∣ x ∣ ∣ ∞ ≤ ∣ ∣ x ∣ ∣ 1 ≤     n   ∣ ∣ x ∣ ∣ ∞ ||x||_\infty \leq ||x||_1 \leq \ \ \ n \ ||x||_\infty ∣∣x∣∣x1   n ∣∣x
    ∣ ∣ x ∣ ∣ ∞ ≤ ∣ ∣ x ∣ ∣ p ≤ n p   ∣ ∣ x ∣ ∣ ∞ ||x||_\infty \leq ||x||_p \leq \sqrt[p]{n} \ ||x||_\infty ∣∣x∣∣xppn  ∣∣x
  • α 1 , α 2 , . . . , α n \alpha_1, \alpha_2 ,..., \alpha_n α1,α2,...,αn n n n 维赋范线性空间 E E E 的一组基,则存在正数 A , B A, B A,B ,使得对一切 x = ∑ k = 1 n ξ k α k ∈ E x = \sum\limits_{k=1}^{n}\xi_k\alpha_k \in E x=k=1nξkαkE,成立着 A ∣ ∣ x ∣ ∣ ≤ ( ∑ k = 1 n ∣ ξ k ∣ 2 ) 1 2 ≤ B ∣ ∣ x ∣ ∣ A||x|| \leq (\sum\limits_{k=1}^{n}|\xi_k|^2)^{\frac{1}{2}} \leq B||x|| A∣∣x∣∣(k=1nξk2)21B∣∣x∣∣
  • 有限维赋范空间的范数是等价的,即对于 n n n 维赋范线性空间 E E E 中的范数 ∣ ∣ x ∣ ∣ a , ∣ ∣ x ∣ ∣ b ||x||_a,||x||_b ∣∣xa,∣∣xb ,存在正数 A , B A, B A,B ,使得对一切 x ∈ E x \in E xE ,成立着 A ∣ ∣ x ∣ ∣ a ≤ ∣ ∣ x ∣ ∣ b ≤ B ∣ ∣ x ∣ ∣ a A||x||_a \leq ||x||_b \leq B||x||_a A∣∣xa∣∣xbB∣∣xa
  • 范数 ∣ ∣ x ∣ ∣ a , ∣ ∣ x ∣ ∣ b ||x||_a , ||x||_b ∣∣xa,∣∣xb 等价时, lim ⁡ x → ∞ ∣ ∣ x n ∣ ∣ a = 0 \lim\limits_{x \rightarrow \infty}||x_n||_a = 0 xlim∣∣xna=0 等价于 lim ⁡ x → ∞ ∣ ∣ x n ∣ ∣ b = 0 \lim\limits_{x \rightarrow \infty}||x_n||_b = 0 xlim∣∣xnb=0
  • $n $ 维赋范线性空间必与 n n n 维向量空间 P n P^n Pn 同构并且同胚。
  • n n n 维向量序列 { x k = ( ξ 1 k , ξ 2 k , . . . , ξ n k ) T ∈ C n x_k = (\xi_1^k, \xi_2^k,...,\xi_n^k)^T \in C^n xk=(ξ1k,ξ2k,...,ξnk)TCn} 收敛于向量 x = ( ξ 1 k , ξ 2 k , . . . , ξ n k ) T ∈ C n x = (\xi_1^k, \xi_2^k,...,\xi_n^k)^T \in C^n x=(ξ1k,ξ2k,...,ξnk)TCn 的充分必要条件为 lim ⁡ x → ∞ ξ i k = ξ i , i = 1 , 2 , . . . , n \lim\limits_{x \rightarrow \infty } \xi_i^k =\xi_i,i=1,2,...,n xlimξik=ξi,i=1,2,...,n,即按坐标收敛。

二、矩阵范数

1、矩阵范数

满足四条范数公理:
正定性
齐次性
三角不等式
相容性: ∀ A , B ∈ C m × n \forall A,B \in C^{m\times n} A,BCm×n,有 ∣ ∣ A B ∣ ∣ ≤ ∣ ∣ A ∣ ∣   ∣ ∣ B ∣ ∣ ||AB|| \leq ||A|| \ ||B|| ∣∣AB∣∣∣∣A∣∣ ∣∣B∣∣

2、常见的矩阵范数

A ∈ C n × n A \in C^{n\times n} ACn×n,称 [ t r ( A H A ) ] 1 2 = ( ∑ i , j = 1 n ∣ a i j ∣ 2 ) 1 2 [tr(A^HA)]^{\frac{1}{2}} = (\sum\limits_{i,j=1}^{n}|a_{ij}|^2)^{\frac{1}{2}} [tr(AHA)]21=(i,j=1naij2)21 A A A F r o b e n i u s Frobenius Frobenius 范数或 F − F - F范数,记为 $ ||A||_F$ 。

  • ∣ ∣ A ∣ ∣ F ||A||_F ∣∣AF 满足范数公理构成 C n × n C^{n \times n} Cn×n 中范数,并且 ∣ ∣ E ∣ ∣ F = n ≥ 1 ||E||_F = \sqrt n \geq 1 ∣∣EF=n 1
  • F − F - F范数的酉不变性 :设 A ∈ C n × n A\in C^{n \times n} ACn×n 中范数,且 P , Q ∈ C n × n P,Q\in C^{n\times n} P,QCn×n 都是酉矩阵,则 ∣ ∣ P A ∣ ∣ F = ∣ ∣ A Q ∣ ∣ F = ∣ ∣ A ∣ ∣ F ||PA||_F = ||AQ||_F = ||A||_F ∣∣PAF=∣∣AQF=∣∣AF , 即给 A 左乘或右乘以酉矩阵后其 ∣ ∣ ⋅ ∣ ∣ F ||·||_F ∣∣F值不变(在 A ∈ R n × n A\in R^{n \times n} ARn×n P P P Q Q Q 都是正交矩阵)
  • 酉(或正交)相似变换下矩阵的 F − F - F范数保持不变。

A ∈ C n × n A\in C^{n\times n} ACn×n,称 ∣ ∣ A ∣ ∣ M 1 = ∑ i , j = 1 n ∣ a i j ∣ ||A||_{M_1}=\sum\limits_{i,j=1}^{n}|a_{ij}| ∣∣AM1=i,j=1naij M 1 − M_1 - M1范数 ∣ ∣ A ∣ ∣ M ∞ = n max ⁡ 1 ≤ i , j ≤ n ∣ a i j ∣ ||A||_{M_\infty}=n \max \limits_{1 \leq i,j \leq n} |a_{ij}| ∣∣AM=n1i,jnmaxaij M ∞ − M_\infty - M范数

  • ∣ ∣ A ∣ ∣ M 1 , ∣ ∣ A ∣ ∣ M ∞ ||A||_{M_1} , ||A||_{M_\infty} ∣∣AM1,∣∣AM 满足范数公理构成 C n × n C^{n\times n} Cn×n 中范数,并且 ∣ ∣ E ∣ ∣ M 1 = n ≥ 1 , ∣ ∣ E ∣ ∣ M ∞ = n ≥ 1 ||E||_{M_1}=n \geq 1 , ||E||_{M_\infty}=n \geq 1 ∣∣EM1=n1,∣∣EM=n1

3、矩阵范数的相容性

满足条件 ∣ ∣ A B ∣ ∣ ≤ ∣ ∣ A ∣ ∣   ∣ ∣ B ∣ ∣ ||AB|| \leq ||A|| \ ||B|| ∣∣AB∣∣∣∣A∣∣ ∣∣B∣∣矩阵范数称为具有相容性

  • 满足相容性的矩阵范数必有 ∣ ∣ E ∣ ∣ ≥ 1 ||E|| \geq 1 ∣∣E∣∣1
  • A A A 可逆,则 ∣ ∣ A ∣ ∣   ∣ ∣ A − 1 ∣ ∣ ≥ 1 ||A|| \ ||A^{-1}|| \geq 1 ∣∣A∣∣ ∣∣A1∣∣1

4、矩阵范数与向量范数的相容性

∣ ∣ A X ∣ ∣ V ≤ ∣ ∣ A ∣ ∣ M   ∣ ∣ X ∣ ∣ V ||AX||_V \leq ||A||_M \ ||X||_V ∣∣AXV∣∣AM ∣∣XV ,则称矩阵范数 ∣ ∣ A ∣ ∣ M ||A||_M ∣∣AM 与向量范数 ∣ ∣ X ∣ ∣ V ||X||_V ∣∣XV具有相容性

  • ∣ ∣ x ∣ ∣ V → 0 ||x||_V \rightarrow 0 ∣∣xV0时, ∣ ∣ A x ∣ ∣ V → 0 ||Ax||_V \rightarrow 0 ∣∣AxV0,即 ∣ ∣ A x ∣ ∣ V ||Ax||_V ∣∣AxV x x x的连续函数或 A x Ax Ax V V V上线性连续算子。
  • x ≠ 0 x \neq 0 x=0时 , ∣ ∣ A x ∣ ∣ V ∣ ∣ X ∣ ∣ V = ∣ ∣ A ( x ∣ ∣ x ∣ ∣ V ) ∣ ∣ V ≤ ∣ ∣ A ∣ ∣ M \frac{||Ax||_V}{||X||_V} = ||A(\frac{x}{||x||_V})||_V \leq ||A||_M ∣∣XV∣∣AxV=∣∣A(∣∣xVx)V∣∣AM ,从而 max ⁡ x ≠ 0 ∣ ∣ A x ∣ ∣ V ∣ ∣ X ∣ ∣ V ≤ ∣ ∣ A ∣ ∣ M \max\limits_{x\neq 0} \frac{||Ax||_V}{||X||_V} \leq ||A||_M x=0max∣∣XV∣∣AxV∣∣AM

三、矩阵的算子范数

1、算子范数的概念

∣ ∣ ⋅ ∣ ∣ V ||·||_V ∣∣V C n C^n Cn 中的范数, A ∈ C   n × n A \in C^{\ n \times n} AC n×n
∣ ∣ A ∣ ∣ M = max ⁡ x ≠ 0 ∣ ∣ A x ∣ ∣ V ∣ ∣ X ∣ ∣ V = max ⁡ ∣ ∣ x ∣ ∣ V = 1 ∣ ∣ A x ∣ ∣ V ||A||_M= \max\limits_{x\neq 0} \frac{||Ax||_V}{||X||_V} = \max\limits_{ ||x||_V=1}||Ax||_V ∣∣AM=x=0max∣∣XV∣∣AxV=∣∣xV=1max∣∣AxV
∣ ∣ ⋅ ∣ ∣ M ||·||_M ∣∣M 为与 ∣ ∣ ⋅ ∣ ∣ V ||·||_V ∣∣V相容的范数矩阵,如上 ∣ ∣ A ∣ ∣ M ||A||_M ∣∣AM这样定义的范数称为算子范数

  • 一般算子范数的求解步骤:
    • ∣ ∣ A x ∣ ∣ V ≤ K ∣ ∣ x ∣ ∣ V ||Ax||_V \leq K||x||_V ∣∣AxVK∣∣xV
    • ∣ ∣ x 0 ∣ ∣ V = 1   ,   ∣ ∣ A x 0 ∣ ∣ V = K ||x_0||_V = 1 \ ,\ ||Ax_0||_V=K ∣∣x0V=1 , ∣∣Ax0V=K

2、算子范数的性质

  • ∣ ∣ A x ∣ ∣ V ≤ ∣ ∣ A ∣ ∣ T    ∣ ∣ x ∣ ∣ V ||Ax||_V \leq ||A||_T \ \ ||x||_V ∣∣AxV∣∣AT  ∣∣xV
  • ∣ ∣ A B ∣ ∣ T ≤ ∣ ∣ A ∣ ∣ T    ∣ ∣ B ∣ ∣ T ||AB||_T \leq ||A||_T \ \ ||B||_T ∣∣ABT∣∣AT  ∣∣BT
  • ∣ ∣ A ∣ ∣ T = max ⁡ ∣ ∣ x ∣ ∣ V = 1 ∣ ∣ A x ∣ ∣ V   ≤ ∣ ∣ X ∣ ∣ V ||A||_T = \max\limits_{||x ||_V = 1} ||Ax||_V \ \leq ||X||_V ∣∣AT=∣∣xV=1max∣∣AxV ∣∣XV (假设 ∣ ∣ A ∣ ∣ M ||A||_M ∣∣AM ∣ ∣ X ∣ ∣ V ||X||_V ∣∣XV具有相容性)
  • ∣ ∣ E ∣ ∣ T = 1 ||E||_T = 1 ∣∣ET=1

3、常见的算子范数

  • 列范数: ∣ ∣ A ∣ ∣ 1 = max ⁡ 1 ≤ j ≤ n ∑ i = 1 n ∣ a i j ∣ ||A||_1= \max\limits_{ 1 \leq j \leq n} \sum\limits_{i=1}^{n}|a_{ij}| ∣∣A1=1jnmaxi=1naij
  • 行范数: ∣ ∣ A ∣ ∣ ∞ = max ⁡ 1 ≤ i ≤ n ∑ j = 1 n ∣ a i j ∣ ||A||_\infty = \max\limits_{1 \leq i \leq n} \sum\limits_{j=1}^{n}|a_{ij}| ∣∣A=1inmaxj=1naij
  • 谱范数: ∣ ∣ A ∣ ∣ 2 = λ m a x ( A T A ) ||A||_2 = \sqrt{\lambda_{max}(A^T A)} ∣∣A2=λmax(ATA)
    • ∣ ∣ E ∣ ∣ 1 = 1 , ∣ ∣ E ∣ ∣ 2 = 1 , ∣ ∣ E ∣ ∣ ∞ = 1 ||E||_1=1 , ||E||_2=1, ||E||_\infty =1 ∣∣E1=1,∣∣E2=1,∣∣E=1
    • A A A 为酉矩阵时, ∣ ∣ A ∣ ∣ 2 = 1 ||A||_2=1 ∣∣A2=1。一般地, ∣ ∣ A ∣ ∣ 2 = σ m a x ( A ) , ∣ ∣ A − 1 ∣ ∣ 2 = 1 σ m i n ( A ) ||A||_2 = \sigma_{max}(A) , ||A^{-1}||_2 = \frac{1}{\sigma_{min}(A)} ∣∣A2=σmax(A),∣∣A12=σmin(A)1 ,其中 σ m a x ( A ) \sigma_{max}(A) σmax(A) σ m i n ( A ) \sigma_{min}(A) σmin(A) 分别是 A A A 的最大和最小奇异值。

四、矩阵范数的应用

1、矩阵的非奇异性条件

  • A ∈ C n × n A\in C^{n \times n} ACn×n ,且对 C n × n C^{n \times n} Cn×n 上的某矩阵算子范数 ∣ ∣ ⋅ ∣ ∣ ||·|| ∣∣∣∣,有 ∣ ∣ A ∣ ∣ < 1 ||A|| < 1 ∣∣A∣∣<1, 则矩阵 E − A E-A EA非奇异,并且 ∣ ∣ ( E − A ) − 1 ∣ ∣   ≤   1 1 − ∣ ∣ A ∣ ∣ , ∣ ∣ E − ( E − A ) − 1 ∣ ∣ ≤ ∣ ∣ A ∣ ∣ 1 − ∣ ∣ A ∣ ∣ ||(E-A)^{-1}|| \ \leq \ \frac{1}{1-||A||} , ||E-(E-A)^{-1}|| \leq \frac{||A||}{1-||A||} ∣∣(EA)1∣∣  1∣∣A∣∣1,∣∣E(EA)1∣∣1∣∣A∣∣∣∣A∣∣
  • A ∈ C   n × n A \in C^{ \ n\times n} AC n×n 非奇异, B ∈ C   n × n B \in C^{\ n\times n} BC n×n ,且对 C   n × n C^{\ n\times n} C n×n 上的某矩阵算子范数 ,有 ∣ ∣ A − 1 B ∣ ∣ < 1 ||A^{-1}B||<1 ∣∣A1B∣∣<1,则
    • A + B A+B A+B 非奇异
    • F = E − ( E + A − 1 B ) − 1 F = E-(E+A^{-1}B)^{-1} F=E(E+A1B)1,则 ∣ ∣ F ∣ ∣ ≤ ∣ ∣ A − 1 B ∣ ∣ 1 − ∣ ∣ A − 1 B ∣ ∣ ||F|| \leq \frac{||A^{-1}B||}{1-||A^{-1}B||} ∣∣F∣∣1∣∣A1B∣∣∣∣A1B∣∣
    • ∣ ∣ A − 1 − ( A + B ) − 1 ∣ ∣ ∣ ∣ A − 1 ∣ ∣ ≤ ∣ ∣ A − 1 B ∣ ∣ 1 − ∣ ∣ A − 1 B ∣ ∣ \frac {||A^{-1}-(A+B)^{-1}||}{||A^{-1}||} \leq \frac{||A^{-1}B||}{1-||A^{-1}B||} ∣∣A1∣∣∣∣A1(A+B)1∣∣1∣∣A1B∣∣∣∣A1B∣∣

2、矩阵的谱半径及其性质

A ∈ C   n × n A\in C^{\ n \times n} AC n×n n n n个特征值为 λ 1 , λ 2 , . . . , λ n \lambda_1 , \lambda_2 ,..., \lambda_n λ1,λ2,...,λn ,称 ρ ( A ) = max ⁡ 1 ≤ i ≤ n { ∣ λ i ∣ } \rho(A)= \max\limits_{1 \leq i \leq n} \{ |\lambda_i| \} ρ(A)=1inmax{λi} 为矩阵 A A A谱半径

  • A ∈ C   n × n A\in C^{\ n \times n} AC n×n , 则对 C   n × n C^{\ n \times n} C n×n 上任何一种矩阵范数 ∣ ∣ ⋅ ∣ ∣ ||·|| ∣∣∣∣,都有 ρ ( A ) ≤ ∣ ∣ A ∣ ∣ \rho (A) \leq ||A|| ρ(A)∣∣A∣∣
  • 对于 A A A 的算子范数(或与向量范数相容的矩阵范数) ∣ ∣ A ∣ ∣ ||A|| ∣∣A∣∣,由 A x 0 = λ x 0 , x ≠ 0 Ax_0=\lambda x_0, x \neq 0 Ax0=λx0,x=0 可得, ∣ λ ∣   ∣ ∣ x 0 ∣ ∣ = ∣ ∣ A x 0 ∣ ∣ ≤ ∣ ∣ A ∣ ∣   ∣ ∣ x 0 ∣ ∣ |\lambda| \ ||x_0|| = ||Ax_0|| \leq ||A|| \ ||x_0|| λ ∣∣x0∣∣=∣∣Ax0∣∣∣∣A∣∣ ∣∣x0∣∣,从而 ∣ λ ∣ ≤ ∣ ∣ A ∣ ∣ |\lambda| \leq ||A|| λ∣∣A∣∣
  • A ∈ C   n × n A\in C^{\ n \times n} AC n×n,对任意的正数 ϵ \epsilon ϵ 存在 A A A 的某种矩阵范数 ∣ ∣ A M ∣ ∣ ||A_M|| ∣∣AM∣∣ ,使得 ∣ ∣ A ∣ ∣ M ≤ ρ ( A ) + ϵ ||A ||_M \leq \rho(A) + \epsilon ∣∣AMρ(A)+ϵ
  • 矩阵的谱半径 ρ ( ⋅ ) \rho (·) ρ() 不构成矩阵的范数,只是所有范数的下确界。但 ρ ( A ) < 1 \rho(A) <1 ρ(A)<1 ∣ ∣ A ∣ ∣ < 1 ||A||<1 ∣∣A∣∣<1等价。
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

frozendure

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值