正交变换不改变矩阵F-范数、2-范数的证明

一、两种范数的定义

1.1 F-范数

∣ ∣ A ∣ ∣ F = ∑ 0 ≤ i , j ≤ n a i j 2 ||A||_F = \sqrt{\sum _{0\le i,j\le n}a_{ij} ^ 2} AF=0i,jnaij2

1.2 2-范数

1.2.1 计算公式

简单来说,矩阵A的2范数可以用下面的公式计算:
∣ ∣ A ∣ ∣ 2 = λ m ||A||_2 = \sqrt{\lambda_m}\\ A2=λm
其中 λ m \lambda_m λm A T A A^TA ATA的最大的特征值

1.2.2 完整的定义

向量范数的定义: ∣ ∣ a ∣ ∣ p = ( ∑ i a i p ) 1 / p ||a||_p = (\sum_i a_i^p)^{1/p} ap=(iaip)1/p

由向量范数构造矩阵范数:

设给定向量范数,对任意矩阵 A ∈ R n × n A\in R^{n\times n} ARn×n,let
∣ ∣ A ∣ ∣ = max ⁡ ∣ ∣ x ∣ ∣ = 1 ∣ ∣ A x ∣ ∣ ||A|| = \max _{||x||=1}||Ax|| A=x=1maxAx
则上式定义的 ∣ ∣ A ∣ ∣ ||A|| A矩阵范数,并且与 ∣ ∣ x ∣ ∣ ||x|| x相容

定义
∣ ∣ A ∣ ∣ p = max ⁡ ∣ ∣ x ∣ ∣ p = 1 ∣ ∣ A x ∣ ∣ p ||A||_p = \max_{||x||_p = 1} ||Ax||_p Ap=xp=1maxAxp
∣ ∣ ⋅ ∣ ∣ p ||\cdot||_p p与矩阵的p-范数相容

1.2.3 计算公式推导

A T A A^TA ATA是非负定对称矩阵,可以相似对角化, 并且特征值全部非负。

设矩阵 A T A A^TA ATA经过正交化的单位特征向量为 x 1 , x 2 , . . . , x n , ∣ ∣ x i ∣ ∣ 2 = 1 , ( x i , x j ) i ≠ j = 0 x_1, x_2,...,x_n,||x_i||_2 = 1,(x_i,x_j)_{i\ne j} = 0 x1,x2,...,xn,xi2=1,(xi,xj)i=j=0

向量 x = c 1 x 1 + . . . + c n x n x = c_1x_1 + ... + c_n x_n x=c1x1+...+cnxn

A T A x = A T A ( c 1 x 1 + . . . + c n x n ) = c 1 λ 1 x 1 + . . . + c n λ n x n A^TAx = A^TA( c_1x_1 + ... + c_n x_n) = c_1 \lambda_1 x_1 + ... + c_n \lambda_n x_n ATAx=ATA(c1x1+...+cnxn)=c1λ1x1+...+cnλnxn

1 = ∣ ∣ x ∣ ∣ 2 2 = ∑ i c i 2 1 = ||x||_2^2 = \sum_i c_i ^2 1=x22=ici2

∣ ∣ A x ∣ ∣ 2 2 = ( A x ) T ( A x ) = x T A T A x = ∑ i c i λ i x T x i = ∑ i c i 2 λ i ≤ λ m ||Ax||_2^2 = (Ax)^T(Ax) = x^T A^TAx = \sum_i c_i \lambda_i x^Tx_i = \sum_i c_i^2 \lambda_i \le \lambda_m Ax22=(Ax)T(Ax)=xTATAx=iciλixTxi=ici2λiλm

x = x m x = x_m x=xm时取等号,因此

∣ ∣ A ∣ ∣ 2 = max ⁡ ∣ ∣ x ∣ ∣ 2 = 1 ∣ ∣ A x ∣ ∣ 2 = λ m ||A||_2 = \max_{||x||_2 = 1} ||Ax||_2 = \sqrt{\lambda_m} A2=maxx2=1Ax2=λm

二、证明正交变换不改变这两种范数

B = P T A P B = P^TAP B=PTAP,P 是正交矩阵。

只需证明 ∣ ∣ A ∣ ∣ = ∣ ∣ B ∣ ∣ ||A|| = ||B|| A=B

2.1 2-范数

由于正交相似变换不改变矩阵的特征值,因此

∣ ∣ A ∣ ∣ 2 = ∣ ∣ B ∣ ∣ 2 ||A||_2 = ||B||_2 A2=B2

2.2 F范数

可以证明 ∣ ∣ A P ∣ ∣ F = ∣ ∣ A ∣ ∣ F ||AP||_F = ||A||_F APF=AF ∣ ∣ P B ∣ ∣ F = ∣ ∣ B ∣ ∣ F ||PB||_F = ||B||_F PBF=BF,因为 A P = P B AP = PB AP=PB,所以得到 ∣ ∣ A ∣ ∣ F = ∣ ∣ B ∣ ∣ F ||A||_F = ||B||_F AF=BF

下面证明 ∣ ∣ P B ∣ ∣ F = ∣ ∣ B ∣ ∣ F ||PB||_F = ||B||_F PBF=BF

将矩阵B按列分块

∣ ∣ P B ∣ ∣ F 2 = ∣ ∣ P ( b 1 , . . . b n ) ∣ ∣ F = ∑ i ∣ ∣ P b i ∣ ∣ 2 2 = ∑ i ( P b i ) T ( P b i ) = ∑ i b i T b i = ∑ i ∣ ∣ b i ∣ ∣ 2 2 = ∣ ∣ B ∣ ∣ F \begin{aligned} ||PB||_F^2 &= ||P(b_1,...b_n)||_F\\ &= \sum_i ||Pb_i||_2^2\\ &= \sum_i (Pb_i)^T(Pb_i)\\ &= \sum_i b_i^Tb_i\\ &= \sum_i ||b_i||_2^2\\ &= ||B||_F\\ \end{aligned} PBF2=P(b1,...bn)F=iPbi22=i(Pbi)T(Pbi)=ibiTbi=ibi22=BF

∣ ∣ A P ∣ ∣ F = ∣ ∣ ( A P ) T ∣ ∣ F = ∣ ∣ P T A T ∣ ∣ F = ∣ ∣ A T ∣ ∣ F = ∣ ∣ A ∣ ∣ F ||AP||_F = ||(AP)^T||_F = ||P^TA^T||_F = ||A^T||_F = ||A||_F APF=(AP)TF=PTATF=ATF=AF
证毕,因此 ∣ ∣ A ∣ ∣ F = ∣ ∣ B ∣ ∣ F ||A||_F = ||B||_F AF=BF

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值