Petri网-3.4 C/E 系统 与 3.5 P/T 系统

3.4 C/E 系统 Condition/Event system

C/E 系统与 EN 系统的区别是 C/E 系统没有初始状态

∑ = ( B , E ; F , C ) \sum=(B,E;F,C) =(B,E;F,C) 称为 C/E 系统,即条件/事件系统。其中:

  • B B B E E E 分别为条件集和事件集
  • F F F 是流关系
  • ( B , E ; F ) (B,E;F) (B,E;F) 为有向网
  • C是完全可达集

C/E 系统是通用网论的基础模型。同步论最初是借助事件正反双向发生定义的。

3.5 P/T 系统(库所/变迁系统)

3.5.1 库所/变迁系统定义
  • 库所:Place
  • 变迁:Transition

∑ = ( S , T ; F , K , W , M 0 ) \sum = (S,T;F,K,W,M_0) =(S,T;F,K,W,M0) 为 P/T 系统,如果 ( S , T ; F ) (S,T;F) (S,T;F) 为有向网。

  • K : S → { 1 , 2 , 3 , . . . } ∪ { ∞ } K:S \rightarrow \{1,2,3,...\}\cup\{\infty\} K:S{1,2,3,...}{} S S S 元素的容量函数
  • ∧ W : F → { 1 , 2 , 3 , . . . } \wedge W:F \rightarrow \{1,2,3,...\} W:F{1,2,3,...} F F F 上的权函数,资源消耗或产生的量
  • ∧ M 0 : S → { 0 , 1 , 2 , . . . } \wedge M_0:S \rightarrow \{0,1,2,...\} M0:S{0,1,2,...} ,初始标识(资源初始分布)
  • ∧ ∀ s ∈ S : M 0 ( s ) ≤ K ( s ) \wedge \forall s \in S: M_0(s) \leq K(s) sS:M0(s)K(s)

思考:如何理解 K ( s ) = ∞ K(s)=\infty K(s)=

3.5.1.1 标识:资源分布

定义: M : S → { 0 , 1 , 2 , . . . } M:S \rightarrow\{0,1,2,...\} M:S{0,1,2,...} 称为 ∑ \sum 上的标识,如果 ∀ s ∈ S : M ( s ) ≤ K ( s ) \forall s \in S:M(s) \leq K(s) sS:M(s)K(s)

3.5.2 变迁规则

在这里插入图片描述

3.5.2.1 变迁规则:发生权

t ∈ T t \in T tT M M M ∑ \sum 的标识

定义: t t t M M M 有发生权,记作 M [ t > M[t> M[t> ,如果 ∀ s ∈ . t : M ( s ) ≥ W ( s , t ) ∧ ∀ s ∈ t . : M ( s ) + W ( s , t ) ≤ K ( s ) \forall s\in ^.t:M(s) \geq W(s,t) \wedge \forall s \in t^.: M(s) + W(s,t) \leq K(s) s.t:M(s)W(s,t)st.:M(s)+W(s,t)K(s)

3.5.2.2 变迁规则:后继

M [ t > M[t> M[t> ,则 t t t 可以发生, M ′ M' M M M M 的后继标识:
M ′ ( s ) = { M ( s ) − W ( s , t ) i f ( s ∈ . t − t . ) M ( s ) + W ( t , s ) i f ( s ∈ t . − . t ) M ( s ) + W ( t , s ) − W ( s , t ) i f ( s ∈ . t ∩ t . ) M ( s ) i f ( s ∉ . t ∪ t . ) \begin{align*} \begin{split} M'(s)= \left \{ \begin{array}{ll} M(s)-W(s,t) & if(s\in^.t-t^.)\\ M(s)+W(t,s) & if(s\in t^.-^.t)\\ M(s)+W(t,s)-W(s,t) & if(s\in ^.t \cap t^.)\\ M(s) & if(s\notin ^.t \cup t^.) \end{array} \right. \end{split} \end{align*} M(s)= M(s)W(s,t)M(s)+W(t,s)M(s)+W(t,s)W(s,t)M(s)if(s.tt.)if(st..t)if(s.tt.)if(s/.tt.)
后继关系记作 M [ t > M ′ M[t>M' M[t>M

3.5.2.3 变迁外延,局部确定原理

. t ∪ t . ^.t \cup t^. .tt. 称为变迁 t t t 的外延(extension)

3.5.2.3.1 局部确定原理(普适)
  • 每个变迁都有它的外延
  • 变迁的发生只依赖其外延,也只改变其外延
  • ∑ ∩ E n v ( ∑ ) \sum \cap Env(\sum) Env() 无冲突
3.5.2.4 广义权函数

W ′ : S × T ∪ T × S → { 0 , 1 , 2 , . . . } W':S \times T \cup T \times S \rightarrow \{0,1,2,...\} W:S×TT×S{0,1,2,...} 称为 ∑ \sum 的广义权函数,如果 ∀ ( x , y ) ∈ S × T ∪ T × S \forall(x,y)\in S \times T \cup T \times S (x,y)S×TT×S
W ′ ( x , y ) = { W ( x , y ) i f ( x , y ) ∈ F 0 i f ( x , y ) ∉ F \begin{align*} \begin{split} W'(x,y)= \left \{ \begin{array}{ll} W(x,y) & if(x,y)\in F\\ 0 & if(x,y)\notin F \end{array} \right. \end{split} \end{align*} W(x,y)={W(x,y)0if(x,y)Fif(x,y)/F

3.5.2.4.1 定义,用广义权函数给出变迁规则

M [ t > : ⟺ ∀ s ∈ S : M ( s ) ≥ W ′ ( s , t ) ∧ M ( s ) + W ′ ( s , t ) ≤ K ( s ) M [ t > M ′ : ⟺ M [ t > ∧ ∀ s ∈ S : M ′ ( s ) = M ( s ) − W ′ ( s , t ) + W ′ ( t , s ) M[t>: \Longleftrightarrow \forall s \in S: M(s) \geq W'(s,t) \wedge M(s) + W'(s,t) \leq K(s) \\ M[t>M': \Longleftrightarrow M[t> \wedge \forall s \in S: M'(s) = M(s) - W'(s,t) + W'(t,s) M[t>:⟺sS:M(s)W(s,t)M(s)+W(s,t)K(s)M[t>M:⟺M[t>sS:M(s)=M(s)W(s,t)+W(t,s)

这仅仅是技术上的处理,而不是概念上的更新

  • 得:广义权函数使变迁规则看上去简洁
  • 失:
    • 技术处理,用 W ′ W' W 取代 W W W 会失去其物理含义;
    • W ′ W' W 取代 W W W F F F ,定义 ∑ = ( S , T ; W ′ , M 0 ) \sum=(S,T;W',M_0) =(S,T;W,M0) ,会失去网结构
3.5.2.5 缺省值及特例的图示

t 1 t_1 t1 缺省的容量为 ∞ \infty ,缺省的权为 1。

在这里插入图片描述

t 2 t_2 t2 不属于 P/T 系统, M 0 ( s 3 ) = 3 > K ( s 3 ) = 2 M_0(s_3)=3>K(s_3)=2 M0(s3)=3>K(s3)=2

在这里插入图片描述

t 3 t_3 t3 属于 P/T 系统,只是不会发生

在这里插入图片描述

  • 对于图上的变迁上没有数字的是 权函数的缺失值,一般就是1。
  • 对于图上的容量上没有数字的是 容量函数的缺失值,一般就是 ∞ \infty
3.5.2.6 容量的物理含义

先举个教堂婚礼的例子,如果忽略新郎新娘之间的差别,即从 CE 系统到 P/T 系统。

在这里插入图片描述

  • 缺点:少了很多具体的描述,比如说 EN 系统原来的冲突消失了。
  • 优点:系统变的简单了。

思考: K ≡ ∞ K \equiv \infty K 还是
{ K ( s 1 ) = K ( s 3 ) = K ( s 4 ) = 2 K ( s 0 ) = K ( s 2 ) = K ( s 5 ) = 1 \begin{align*} \begin{split} \left \{ \begin{array}{ll} K(s_1)=K(s_3)=K(s_4)=2\\ K(s_0)=K(s_2)=K(s_5)=1 \end{array} \right. \end{split} \end{align*} {K(s1)=K(s3)=K(s4)=2K(s0)=K(s2)=K(s5)=1
就这个例子而言,其实认为它的容量是 2 还是 ∞ \infty 都可以,因为都不会影响系统的后继和运行。

3.5.2.7 库所的物理含义
  • 可观察的同类资源
    • 同类是指在系统中作用相同,如新浪新娘
  • 例子(桶装水和瓶装水不同类)
    • 如果要描述的是出门旅游:它们属于不同变迁的外延。
    • 它们参与的变迁不同。
      • 对于桶装水,需要把水倒到瓶装水,然后饮用。
      • 对于瓶装水,直接可以饮用。
3.5.2.8 变迁的物理含义
  • 可观察的资源消耗和新资源的产生
    • 有确定不变的观察结果,不因观察者或观察方式而改变,包括质变和量变。
    • 原子性:不中断,无中间状态。中断属于意外。
  • 网系统只描述正常变化,不描述意外。观察意外会得到不确定的结果,且不能枚举。

思考:库所元素和变迁元素是否一目了然?

并没有想象中的一目了然,需要分清楚边界和切口。

3.5.3 EN 系统 ⊂ \subset P/T 系统

EN 系统 ∑ = ( B , E ; F , c i n ) \sum = (B,E;F,c_{in}) =(B,E;F,cin) 是 P/T 系统的特例。

  • 其中 K ≡ 1 K\equiv 1 K1 W ≡ 1 W \equiv 1 W1 M 0 M_0 M0 c i n c_{in} cin 的另一种表示

∀ b ∈ B : { M 0 ( b ) = 1 i f ( b ∈ c i n ) M 0 ( b ) = 0 i f ( b ∉ c i n ) \begin{align*} \begin{split} \forall b \in B : \left \{ \begin{array}{ll} M_0(b)=1 &if(b\in c_{in})\\ M_0(b)=0 &if(b\notin c_{in}) \end{array} \right. \end{split} \end{align*} bB:{M0(b)=1M0(b)=0if(bcin)if(b/cin)

3.5.3.1 练习

将 EN 系统上定义的基本现象移植到 P/T 系统上,变迁(事件)和变迁发生权。

3.5.3.1.1 例子1

在这里插入图片描述

  • t 1 t_1 t1 t 2 t_2 t2 并发
  • t 1 t_1 t1 t 2 t_2 t2 分别和自己并发
3.5.3.1.2 例子2

在这里插入图片描述

  • t 1 t_1 t1 t 2 t_2 t2 t 3 t_3 t3 两两并发
  • t 2 t_2 t2 和自己并发
  • 三者不能并发
3.5.3.2 并发步

在同一标识可以并发的一个或多个变迁,称为该标识上的一个并发步。例如:

  • 3.5.3.1.1 例子1 { t 1 , t 2 } \{t_1,t_2\} {t1,t2} 是并发步,写成 t 1 + t 2 t_1+t_2 t1+t2 。同时, 2 t 1 2t_1 2t1 2 t 2 2t_2 2t2 也是并发步。
  • 3.5.3.1.2 例子2 t 1 + t 2 t_1+t_2 t1+t2 t 1 + t 3 t_1+t_3 t1+t3 t 2 + t 3 t_2+t_3 t2+t3 2 t 2 2t_2 2t2
3.5.3.3 可达标识集
3.5.3.3.1 定义

M M M ∑ \sum 的任一标识,用 [ M ⟩ [M \rangle [M 表示符合下列条件的最小集合

  • M ∈ [ M ⟩ M \in [M \rangle M[M
  • t ∈ T ∧ M ′ ∈ [ M ⟩ ∧ M ′ [ t ⟩ M ′ ′ → M ′ ′ ∈ [ M ⟩ t\in T \wedge M' \in [M \rangle \wedge M'[t \rangle M'' \\ \rightarrow M'' \in [M \rangle tTM[MM[tM′′M′′[M

定义: [ M 0 ⟩ [M_0 \rangle [M0 称为 ∑ \sum 的可达标识集

3.5.3.3.2 自然语言定义

可达标识集 [ M 0 ⟩ [M_0 \rangle [M0 的自然语言定义:

  • M 0 M_0 M0 开始,包括 M 0 M_0 M0
  • 经有限步变迁发生
  • 能到达的
  • 所有标识的集合

思考:怎么证明?

3.5.3.4 变迁序列

σ = τ 1 τ 2 . . . τ n \sigma = \tau _1 \tau _2 ... \tau _n σ=τ1τ2...τn 称为 ∑ \sum 的变迁序列。如果对 i = 1 , 2 , . . . , n i=1,2,...,n i=1,2,...,n τ i ∈ T ∧ ∃ M i ∈ [ M 0 ⟩ : M i − 1 [ τ i ⟩ M i \tau _i \in T \wedge \exists M_i \in [M_0 \rangle : M_{i-1}[\tau _i \rangle M_i τiTMi[M0:Mi1[τiMi,即 M 0 [ τ 1 ⟩ M 1 [ τ 2 ⟩ M 2 . . . M n − 1 [ τ n ⟩ M n M_0 [\tau _1 \rangle M_1[ \tau _2 \rangle M_2... M_{n-1}[\tau _n \rangle M_n M0[τ1M1[τ2M2...Mn1[τnMn

M n M_n Mn 称为 σ \sigma σ 的后继标识,记作 M 0 [ σ ⟩ M n M_0[\sigma \rangle M_n M0[σMn

变迁序列是从 M 0 M_0 M0 开始可以依次发生的变迁组成的序列,不是任意的变迁组成的序列。

变迁序列可以扩展到无穷序列:

  • σ ′ = τ 1 τ 2 τ 3 . . . \sigma ' = \tau _1 \tau _2 \tau _3... σ=τ1τ2τ3... 为无穷序列,如果它的任何有限前缀均为变迁序列,则 σ ′ \sigma ' σ 是(无穷)变迁序列。
3.5.3.5 P/T 系统性质
3.5.3.5.1 活性

关注状态,即 [ M 0 ⟩ [M_0 \rangle [M0

  • 变迁 t ∈ T t\in T tT 是活的,如果 ∀ M ∈ [ M 0 ⟩ ∃ M ′ ∈ [ M ⟩ : M ′ [ t ⟩ \forall M \in [M_0 \rangle \exists M' \in [ M \rangle : M'[t \rangle M[M0M[M:M[t
  • ∑ \sum 是活的,如果它的所有变迁都是活的。
3.5.3.5.2 有界性

若存在正整数 k k k ,使得 ∀ M ∈ [ M 0 > ∀ s ∈ S : M ( s ) ≤ k \forall M \in [M_0 > \forall s \in S:M(s) \leq k M[M0>sS:M(s)k ,则 ∑ \sum 称为有界系统。

  • 教堂婚礼系统是活的,以 2 为界。
  • 哲学家系统的网系统是活的,以 1 为界。哲学家就餐问题的图如下:

在这里插入图片描述

3.5.3.5.3 公平性

如果不存在无穷变迁序列 σ \sigma σ 和变迁子集 T 1 T_1 T1 T 2 T_2 T2 ,使得 # ( σ , T 1 ) = ∞ ∧ # ( σ , T 2 ) < ∞ \#(\sigma ,T_1)=\infty \wedge \#(\sigma, T_2)<\infty #(σ,T1)=#(σ,T2)<,则 ∑ \sum 是公平的, 其中 # ( σ , T i ) \#(\sigma ,T_i) #(σ,Ti) T i T_i Ti 中变迁在 σ \sigma σ 中出现的次数, i = 1 , 2 i=1,2 i=1,2

  • 教堂婚礼系统是公平的
  • 不加管理的哲学家系统是不公平的
  • 问题:公平性的定义合理吗?
3.5.3.6 系统进程

状态变迁并重:网系统进程。

3.5.3.6.1 出现网

N = ( B , E ; F ) N=(B,E;F) N=(B,E;F) 称为出现网,如果 N N N 为有向网,且 ( ∀ b ∈ B : ∣ . b ∣ ≤ 1 ∧ ∣ b . ∣ ≤ 1 ) ∧ ( ∀ x ∈ B ∪ E : ( x , x ) ∉ F + ) (\forall b \in B:|^.b| \leq 1 \wedge |b^.| \leq 1) \wedge (\forall x \in B \cup E:(x,x) \notin F^+) (bB:.b1b.1)(xBE:(x,x)/F+)

例子(出现网 N 1 N_1 N1):

在这里插入图片描述

  • N 1 N_1 N1 每个库所至多一条入弧、一条出弧。(产生和消耗)
  • N 1 N_1 N1 无环, ( b 2 , b 4 ) ∈ F 2 (b_2,b_4)\in F^2 (b2,b4)F2 ( b 1 , b 3 ) ∈ F 5 (b_1,b_3)\in F^5 (b1,b3)F5 F + = F ∪ F 2 ∪ F 3 ∪ . . . F^+=F\cup F^2 \cup F^3 \cup ... F+=FF2F3...

定义:出现网 N N N 是网系统 ∑ \sum 的一个进程,如果存在从 N N N ∑ \sum 的映射。如下图就是 出现网 N 1 N_1 N1 的 网系统映射 网系统 ∑ 1 \sum _1 1

在这里插入图片描述

N 1 N_1 N1 ∑ 1 \sum _1 1 的一个进程(变迁发生的记录),从 N 1 N_1 N1 ∑ 1 \sum _1 1 的映射:

  • b 1 → s 1 b_1 \rightarrow s_1 b1s1 b 2 → s 3 b_2 \rightarrow s_3 b2s3 b 3 → s 2 b_3 \rightarrow s_2 b3s2 b 4 → s 4 b_4 \rightarrow s_4 b4s4 b 5 → s 3 b_5 \rightarrow s_3 b5s3 b 6 → s 1 b_6 \rightarrow s_1 b6s1 b 7 → s 2 b_7 \rightarrow s_2 b7s2
  • e 1 → t 1 e_1 \rightarrow t_1 e1t1 e 2 → t 2 e_2 \rightarrow t_2 e2t2 e 3 → t 1 e_3 \rightarrow t_1 e3t1
3.5.3.6.2 网系统进程的形式(半形式)定义很复杂

通常只给出 ∑ = ( S , T ; F , M 0 ) \sum=(S,T;F,M_0) =(S,T;F,M0) 上的进程定义,即 K ≡ ∞ K\equiv \infty K W ≡ 1 W \equiv 1 W1

这里最“老”的网系统(Petri 最早的定义,在其博士论文中的定义)。

进程是并发公理基础。

3.5.3.7 k < ∞ k<\infty k< 的物理含义

k ( s ) = 5 k(s)=5 k(s)=5 表示 s s s 有 5 个“空间资源”,或 s s s 的空间至多能容纳 5 个 s s s 类资源(如车库)。例如下图:

在这里插入图片描述

t t t 只能发生一次,再发生会引出 s s s 处的冲撞。

k = ∞ k=\infty k=:空间足够大,不会对变迁发生构成限制。

在这里插入图片描述

以下就会受到影响:

在这里插入图片描述

3.5.3.7.1 容量函数的作用

以容量函数而非 token 表示空间资源,体现空间资源与其它资源的本质区别:被占的空间不能阻止强占,已消耗的资源已不可见

引出 “冲撞(contact)” 这一基本现象。熟知空间资源特点后,S_补技术改用 token 表示有限的空间资源, k ≡ ∞ k \equiv \infty k ,冲撞从系统中消失(并非从现实消失)。

s ′ s' s s s s 互为补库所:

  • s ′ . = . s ∧ . s ′ = s . s'^.=^.s \wedge ^.s'=s^. s′.=.s.s=s.
  • W ( s ′ , t ) = W ( t , s ) W(s',t)=W(t,s) W(s,t)=W(t,s)
  • M ( s ′ ) + M ( s ) = k ( s ) M(s')+M(s)=k(s) M(s)+M(s)=k(s)

例如下面的:

在这里插入图片描述

3.5.4 代数表示

限于有线网系统 : : : 全局,结构: ∑ = ( S , T ; F , W , M 0 ) \sum =(S,T;F,W,M_0) =(S,T;F,W,M0) K ≡ ∞ K \equiv \infty K T = { t 1 , t 2 , . . . , t n } T=\{t_1,t_2,...,t_n\} T={t1,t2,...,tn} S = { s 1 , s 2 , . . . , s m } S=\{s_1,s_2,...,s_m\} S={s1,s2,...,sm} W ′ : S × T ∪ T × S → { 0 , 1 , 2 , . . . } W':S \times T \cup T \times S \\ \rightarrow \{0,1,2,...\} W:S×TT×S{0,1,2,...} 为广义权函数。

3.5.4.1 关联矩阵

定义: m × n m \times n m×n 阶矩阵 A A A 称为 ∑ \sum 的关联矩阵。如果
A = t 1 t 2 . . . t n s 1 s 2 ⋮ s m ( a ( i , j ) . . . ⋮ ) \begin{align*} \begin{split} A= \begin{array}{lc} {}& \begin{array}{cc}t_1&t_2&...&t_n \end{array}\\ \begin{array}{c}s_1\\s_2\\ \vdots \\s_m\end{array}& \left(\begin{array}{cc} &&&\\ &a(i,j)&&\\ ...&\vdots&&\\ &&& \end{array}\right) \end{array} \end{split} \end{align*} A=s1s2smt1t2...tn ...a(i,j)
其中, a ( i , j ) = W ′ ( t i , s j ) − W ′ ( s j , t i ) a(i,j)=W'(t_i,s_j)-W'(s_j,t_i) a(i,j)=W(ti,sj)W(sj,ti)

关联矩阵与 M 0 M_0 M0 无关,是网系统的结构描述。

3.5.4.1.1 例子 ∑ 1 \sum _1 1

在这里插入图片描述

∑ 1 \sum _1 1 的关联矩阵
A = t 1 t 2 h l c r ( − 1 − 1 − 2 − 4 1 0 0 1 ) \begin{align*} \begin{split} A= \begin{array}{lc} {}& \begin{array}{cc}t_1&t_2 \end{array}\\ \begin{array}{c}h\\l\\c\\r\end{array}& \left(\begin{array}{cc} -1&-1\\ -2&-4\\ 1&0\\ 0&1 \end{array}\right) \end{array} \end{split} \end{align*} A=hlcrt1t2 12101401

3.5.4.1.2 例子 ∑ 2 \sum _2 2

在这里插入图片描述

∑ 2 \sum _2 2 的关联矩阵
A 2 = t 1 t 2 t 3 s 1 s 2 s 3 ( − 1 0 1 − 1 1 − 1 2 − 1 0 ) \begin{align*} \begin{split} A_2= \begin{array}{lc} {}& \begin{array}{cc}t_1&t_2&t_3 \end{array}\\ \begin{array}{c}s_1\\s_2\\s_3\end{array}& \left(\begin{array}{cc} -1&0&1\\ -1&1&-1\\ 2&-1&0 \end{array}\right) \end{array} \end{split} \end{align*} A2=s1s2s3t1t2t3 112011110

3.5.4.2 S_向量T_向量
  • τ = ( a 1 , a 2 , . . . , a n ) \tau=(a_1,a_2,...,a_n) τ=(a1,a2,...,an) a i a_i ai 为非负整数
  • σ = ( b 1 , b 2 , . . . , b m ) \sigma = (b_1,b_2,...,b_m) σ=(b1,b2,...,bm) b j b_j bj 为非负整数
  • 分别称为 ∑ \sum T_向量S_向量
  • τ T = ( a 1 a 2 ⋮ a n ) \tau ^ T = \begin{array}{lc} \left(\begin{array}{cc} a_1\\ a_2\\ \vdots \\ a_n \end{array}\right) \end{array} τT= a1a2an ​, σ T = ( b 1 b 2 ⋮ b m ) \sigma ^ T = \begin{array}{lc} \left(\begin{array}{cc} b_1\\ b_2\\ \vdots \\ b_m \end{array}\right) \end{array} σT= b1b2bm 分别是 τ \tau τ σ \sigma σ 的转置向量。
3.5.4.2.1 状态方程

M = M 0 + A ⋅ τ T M=M_0+A \cdot \tau ^ T M=M0+AτT 称为 ∑ \sum 的状态方程,其中 τ \tau τ 为任一 T_向量 M 0 M_0 M0 M M M 分别是标识的 S_向量

命题:设 α = τ 1 , τ 2 , . . . \alpha = \tau _1,\tau _2,... α=τ1,τ2,... τ 1 \tau _1 τ1 ∑ \sum 的任一变迁序列, τ = ( a 1 , a 2 , . . . , a n ) \tau=(a_1,a_2,...,a_n) τ=(a1,a2,...,an) 是它的 T_向量 ,即 a i a_i ai 为变迁 t i t_i ti 在该序列中出现的次数, i = 1 , 2 , . . . , n i=1,2,...,n i=1,2,...,n ,则 M = M 0 + A ⋅ τ T M=M_0+A \cdot \tau ^ T M=M0+AτT,其中 M M M α \alpha α 的后继: M 0 [ α ⟩ M M_0[\alpha \rangle M M0[αM

3.5.4.2.2 T-不变量S-不变量

T-不变量

  • T_向量 τ \tau τ 满足 M 0 = M 0 + A ⋅ τ T M_0=M_0+A \cdot \tau^T M0=M0+AτT,则 τ \tau τ 称为 ∑ \sum T-不变量
  • τ \tau τ ∑ \sum T-不变量,则 A ⋅ τ T = θ S T A \cdot \tau ^ T=\theta ^ T_S AτT=θST,其中 θ S \theta _S θS 是分量全为 0 的 S_向量

S-不变量

S_向量 σ \sigma σ 满足 σ ⋅ A = θ T \sigma \cdot A = \theta _T σA=θT ,则 σ \sigma σ 称为 ∑ \sum S-不变量。其中 θ T \theta _T θT 是分量全为 0 的 T_向量

例子 ∑ 1 \sum _1 1

在这里插入图片描述

∑ 1 \sum _1 1S-不变量 包括:

  • σ 1 = ( 1 , 0 , 1 , 1 ) \sigma _1=(1,0,1,1) σ1=(1,0,1,1)
  • σ 2 = ( 0 , 1 , 2 , 4 ) \sigma _2=(0,1,2,4) σ2=(0,1,2,4)
  • σ 1 ⋅ A 1 = ( 1 , 0 , 1 , 1 ) ⋅ ( − 1 − 1 − 2 − 4 1 0 0 1 ) = ( 0 , 0 ) \sigma _1 \cdot A_1 = (1,0,1,1)\cdot \begin{array}{lc} \left(\begin{array}{cc} -1 & -1\\ -2 & -4\\ 1 & 0\\ 0 & 1 \end{array}\right) \end{array} = (0,0) σ1A1=(1,0,1,1) 12101401 =(0,0)
  • σ 2 ⋅ A 1 = ( 0 , 1 , 2 , 4 ) ⋅ ( − 1 − 1 − 2 − 4 1 0 0 1 ) = ( 0 , 0 ) \sigma _2 \cdot A_1 = (0,1,2,4)\cdot \begin{array}{lc} \left(\begin{array}{cc} -1 & -1\\ -2 & -4\\ 1 & 0\\ 0 & 1 \end{array}\right) \end{array} = (0,0) σ2A1=(0,1,2,4) 12101401 =(0,0)

例子 ∑ 2 \sum _2 2

在这里插入图片描述

∑ 2 \sum _2 2 的不变量包括:

  • σ = ( 1 , 1 , 1 ) \sigma=(1,1,1) σ=(1,1,1)
  • τ = ( 1 , 2 , 1 ) \tau = (1,2,1) τ=(1,2,1)
  • σ ⋅ A 2 = ( 1 , 1 , 1 ) ⋅ ( − 1 0 1 − 1 1 − 1 2 − 1 0 ) = ( 0 , 0 , 0 ) \sigma \cdot A_2 = (1,1,1)\cdot \begin{array}{lc} \left(\begin{array}{cc} -1 & 0 & 1\\ -1 & 1 & -1\\ 2 & -1 & 0 \end{array}\right) \end{array} = (0,0,0) σA2=(1,1,1) 112011110 =(0,0,0)
  • A 2 ⋅ τ T = ( − 1 0 1 − 1 1 − 1 2 − 1 0 ) ⋅ ( 1 2 1 ) = ( 0 , 0 , 0 ) A_2 \cdot \tau ^ T = \begin{array}{lc} \left(\begin{array}{cc} -1 & 0 & 1\\ -1 & 1 & -1\\ 2 & -1 & 0 \end{array}\right) \end{array} \cdot \begin{array}{lc} \left(\begin{array}{cc} 1\\ 2\\ 1 \end{array}\right) \end{array} = (0,0,0) A2τT= 112011110 121 =(0,0,0)​​

练习

∑ 1 \sum_1 1 是鸡兔同笼问题中数鸡( t 1 t_1 t1)数兔( t 2 t_2 t2)的网表示,请补上 t 1 t_1 t1 t 2 t_2 t2 可能需要的调整变迁(并发数数,一方太快,导致头或腿剩下)。

找一找教堂婚礼系统的不变量

找一找哲学家系统的不变量,理解 S-不变量T-不变量 的物理意义。

3.5.4.2.3 求解不变量

{ A ⋅ X T = θ S Y ⋅ A = θ T \left \{ \begin{array}{ll} A \cdot X^T = \theta _S \\ Y \cdot A = \theta _T \end{array} \right. {AXT=θSYA=θT 可以求解 T T T S S S 不变量或者验证不变量。其中, X = ( x 1 , x 2 , . . . , x n ) X=(x_1,x_2,...,x_n) X=(x1,x2,...,xn) Y = ( y 1 , y 2 , . . . , y m ) Y=(y_1,y_2,...,y_m) Y=(y1,y2,...,ym) 分别为未知变量 T_向量未知S_向量

3.5.4.2.4 结论

T-不变量S-不变量 是结构性质,与 M 0 M_0 M0 无关。

定义:

  • 如果 ∑ \sum 有非零 T-不变量 ,则 θ T \theta _T θT 也是 ∑ \sum T-不变量 ;否则不是
  • 如果 ∑ \sum 有非零 S-不变量 ,则 θ S \theta _S θS 也是 ∑ \sum S-不变量 ;否则不是

命题:

  • T-不变量S-不变量)的线性组合也是 T-不变量S-不变量)。
3.5.5 通用分析方法
  • 可达树与覆盖树算法
  • 求解不变量法
  • 化简法:忽略网结构细节
  • 提高层次法:提高抽象度以减少节点数
3.5.5.1 可达树与覆盖树算法
3.5.5.1.1 例: ∑ \sum 如图所示

在这里插入图片描述

M 0 = ( 1 , 0 , 0 ) M_0=(1,0,0) M0=(1,0,0) S 1 S_1 S1 S 2 S_2 S2 S 3 S_3 S3 的资源数

在这里插入图片描述

若无无穷分支,可达树节点即为 [ M 0 > [M_0> [M0>

覆盖树算法:为无穷分支“剪枝”

  • M 1 ≤ M 2 M_1\leq M_2 M1M2 ,如果 ∀ s ∈ S : M 1 ( s ) ≤ M 2 ( s ) \forall s \in S:M_1(s)\leq M_2(s) sS:M1(s)M2(s) M 2 M_2 M2 覆盖 M 1 M_1 M1
  • M 1 < M 2 M_1 < M_2 M1<M2 ,如果 M 1 ≤ M 2 ∧ ∃ s ∈ S : M 1 ( s ) < M 2 ( s ) M_1 \leq M_2 \wedge \exists s \in S:M_1(s)<M_2(s) M1M2sS:M1(s)<M2(s)

在这里插入图片描述

最后得到的覆盖树

在这里插入图片描述

[ M 0 > [M_0> [M0> 中所有标识均被覆盖树节点覆盖

在这里插入图片描述

覆盖图: M 2 M_2 M2 M 1 M_1 M1 重叠,一类叶节点。将覆盖树同一路径上相同节点重叠

在这里插入图片描述

可达树,覆盖树,覆盖图,可用以检查验证活性,有界性,公平性及不变量。

  • 如例子中的系统是不公平的,不活的,无界的,没有不变量。
3.5.5.2 求解不变量法
3.5.5.3 化简法:忽略网结构细节
3.5.5.4 提高层次法:提高抽象度以减少节点数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值