计算机组成原理——浮点加减运算的一道非计算例题

浮点加减运算的一道非计算例题

一、题目

  • 文字描述

    例6.31设机器数字长16位,阶码5位(含1位阶符),基值为2,尾数11位(含1位数符)。 对千两个阶码相等的数按补码浮点加法完成后,由于规格化操作可能出现的最大误差的绝对值 是多少?

  • 题目原图

在这里插入图片描述

二、个人疑问以及理解

  • 疑问

    最开始看这道例题,我看不懂为什么答案(带绝对值的)是 2 4 2^4 24

  • 解答

    题目给定尾数有11位,其中含1位符号位,那么数值位为10位。假设有以下数:
    00, 1110 ; 01.XXXX XXXX X1  \text{00, 1110 ; 01.XXXX XXXX X1 } 00, 1110 ; 01.XXXX XXXX X1 
    很明显,我们处理的中间值(完成对阶尾数加减后)两位符号位为01,意味着需要右规

    很不巧,我们的尾数数值部分最后1位为1,右规后将被丢弃,如下所示:
    00,  1111 ⏟ 15  ; 00. 1XXX XXXX XX ⏟ 10 位数值位 1 ⏟ 丢弃 \text{00, }\underbrace{\text{1111}}_{\text{15}}\text{ ; 00.}\underbrace{\text{1XXX XXXX XX}}_{10\text{位数值位}}\underbrace{1}_{\text{丢弃}} 00, 15 1111 ; 00.10位数值位 1XXX XXXX XX丢弃 1
    我们可以观察到,右规后,尾数低位丢弃了1,这个1就是导致误差存在的原因,那么它会导致多大的误差呢?

    这里我们做个假设好吧,我们假设这个1没有被丢弃,并且此时我要把这个浮点数还原为原码表示阶码为15(已经是能表示的最大值了),我们把尾数往左移15位,然后阶码变为0,得到如下值:
    1X XXXX XXX1 0000.0 \text{1X XXXX XXX1 0000.0} 1X XXXX XXX1 0000.0
    我们仔细审视这串二进制码,你会发现原来被丢弃的1,在我们假设不丢弃然后左移阶码(15)位后还原成了它的真实应该表示的值(16,即1 0000)。

    而实际上我们右规要把它丢弃,丢弃了那就变成了:
    1X XXXX XXX0 0000.0 \text{1X XXXX XXX0 0000.0} 1X XXXX XXX0 0000.0
    很明显,两者差距就是 2 4 = 16 2^4=16 24=16,因此误差的绝对值就是 2 4 2^4 24,或者是 ( 1   0000 ) 2 (1\space 0000)_2 (1 0000)2

有时候真感觉自己傻傻的,别人想一会就能搞定的东西,自己得想好久;可喜的是,还能理解。

三、心灵的救赎

如果想征服生命中的焦虑,活在当下,活在每一个呼吸里。——马特·海格

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值