符号回归
文章平均质量分 94
符号回归算法:遗传规划
青年有志
【进化计算、群体智能、多目标优化、机器学习、深度学习】 仰望星空,脚踏实地~
展开
-
2009,TEVC,Order of Nonlinearity as a Complexity Measure for Models Generated by SR via Pareto GP
设一个树结构表示一个在一组变量。原创 2024-06-11 19:23:56 · 721 阅读 · 0 评论 -
2007,TCYB,Scaling Genetic Programming to Large Datasets Using Hierarchical Dynamic Subset Selection
论文年份:2007,论文被引:原创 2024-03-02 21:17:43 · 915 阅读 · 0 评论 -
2013,CEC,Using semantics in the selection mechanism in GP: promoting semantic diversity
论文年份:2013,论文被引:原创 2024-03-02 20:32:38 · 756 阅读 · 0 评论 -
1994,PPSN,Dynamic training subset selection for supervised learning in Genetic Programming
论文年份:1994,论文被引:原创 2024-03-02 20:07:30 · 882 阅读 · 0 评论 -
2022,Active learning improves performance on symbolic regression tasks in StackGP
论文年份:2022,论文被引:原创 2024-03-02 17:03:03 · 714 阅读 · 0 评论 -
1998,Genetic Programming with Active Data Selection
遗传编程发展出类似 Lisp 的程序,而不是固定大小的线性字符串。这种代表性能力与通用性相结合,使遗传编程成为自动编程和机器学习的有趣工具。一个弱点是开发复杂的程序需要大量时间。在本文中,我们提出了一种通过在运行过程中主动选择适应度案例来加速遗传编程进化速度的方法。与重复使用所有给定训练数据的传统遗传编程相比,所提出的方法仅使用在每一代中增量选择的给定数据的子集来演化程序。该方法应用于多个机器人代理的集体行为的演化。原创 2024-03-01 20:46:06 · 719 阅读 · 0 评论 -
2022,Q1(Applied Soft Computing),Semantic schema based genetic programming for symbolic regression
论文年份:2022,论文被引:原创 2024-01-17 20:01:50 · 1139 阅读 · 0 评论 -
2018,Q1(IS),Semantic tournament selection for gp based on statistical analysis of error vectors
论文年份:2018,论文被引:原创 2024-01-17 19:53:09 · 931 阅读 · 0 评论 -
2018,GECCO,Solving the Exponential Growth of Symbolic Regression Trees in Geometric Semantic GP
几何语义遗传规划(Geometric Semantic Genetic Programming,GSGP)的进展表明,这种遗传规划(Genetic Programming,GP)的变体在有监督机器学习问题中,特别是在符号回归任务中,取得了比其前身更好的结果。然而,几何语义交叉算子通过构造产生的个体随着代数呈指数增长,导致产生的解使用受限,因此本文提出了一种新的个体简化方法GSGP with Reduced Tree (GSGP-Red)。GSGP-Red通过扩展由几何语义算子生成的函数来工作。原创 2024-01-09 20:44:49 · 887 阅读 · 0 评论 -
2018, Strategies for reducing the size of the search space in semantic genetic programming
在解决优化问题时,遗传编程(GP)算法应用生物启发操作(例如,交叉和变异),以便在可能的解空间中找到满意的解决方案。通常,这类算法用于解决一个称为符号回归的问题,其目标是找到一个数学表达式,其对应的曲线近似由一组训练实例诱导的曲线。典型的GP算子没有考虑到语义方面,这往往会恶化使用它们的方法的性能和鲁棒性。另一方面,语义遗传算子聚合了语义的概念,允许对搜索空间进行更一致的探索。另一个改进是利用n维语义空间中描述可能解之间空间关系的几何性质,其中n等于训练实例的数量。原创 2024-01-09 19:30:56 · 1472 阅读 · 0 评论 -
2016,PPSN,Reducing Dimensionality to Improve Search in Semantic Genetic Programming
论文年份:2016,论文被引:6原创 2024-01-08 20:32:16 · 842 阅读 · 0 评论 -
Deap 符号回归部分框架细节介绍
创建一个 gp.PrimitiveSet 对象,对象名为 MAIN,自变量为 3。原创 2023-12-21 09:24:13 · 1009 阅读 · 1 评论 -
2021, Symbolic Regression via Neural-Guided Genetic Programming Population Seeding
符号回归是指从黑箱过程中识别符合观测输出的数学表达式的过程。它是一个离散优化问题,一般认为是 NP-hard 问题。先前解决该问题的方法包括神经引导搜索 (neural-guided search)(例如:使用强化学习)和遗传规划 (genetic programming)。在这项工作中,我们引入了一种混合神经引导/遗传规划方法来解决符号回归和其他组合优化问题。我们提出了一个神经引导组件(a neural-guided component),用于种子随机重启遗传编程组件的初始种群,逐步学习更好的初始种群。原创 2023-05-17 09:45:37 · 591 阅读 · 0 评论 -
2018,GECCO,Where are we now? A large benchmark study of recent symbolic regression methods
在本文中,我们在最先进的机器学习方法的背景下,为符号回归提供了最近遗传编程方法的广泛 benchmarking。我们使用了从网上开源知识库中剔除的近100个回归基准问题。我们对最近的四种符号回归方法以及 scikit-Learn 的九种机器学习方法进行了严格的基准测试。结果表明,与最先进的梯度提升算法相比,符号回归表现强劲,尽管在运行时间方面是现有方法中最慢的。我们对结果进行了详细讨论,并指出了未来可能允许符号回归在机器学习领域获得更广泛采用的研究方向。原创 2023-05-17 09:44:15 · 185 阅读 · 0 评论 -
2022, Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery
本文重新审视了符号回归的数据集和评价标准,符号回归是一项从给定数据中恢复数学表达式的任务,特别关注其在科学发现方面的潜力。以现有的基于Feynman物理学讲座的数据集所使用的一组公式为重点,我们重新创建了120个数据集来讨论科学发现的符号回归(SRSD)的性能。对于这120个SRSD数据集中的每一个,我们都仔细审查了公式及其变量的属性,以设计合理的现实的取样范围,这样我们新的SRSD数据集就可以用来评估SRSD的潜力,例如SR方法是否能从这些数据集中(重新)发现物理规律。原创 2023-03-16 15:08:51 · 867 阅读 · 0 评论 -
2020,TEVC,Preserving Population Diversity Based on Transformed Semantics in GP for SR
论文年份: 论文被引:(2023)原创 2023-03-20 19:12:13 · 386 阅读 · 0 评论 -
✨2021,SEC,Optimizing genetic programming by exploiting semantic impact of sub trees
现在的研究者已经将注意力转移到使随机算法具有确定性上。这是为了减少搜索过程中无果的探索,给搜索过程指明方向。算法中局部性的缺失是实现这一目标的最大阻碍。GP中的局部性被描述为基因型的变化与其表型(solution)的语义之间的相关性。在强局部性(strong locality)下,邻近的基因型和表型在一个搜索空间中相互对应。认为具有强局部性的搜索算法比具有弱局部性的算法性能更好。遗传规划是解决具有挑战性问题的性能最好的随机算法之一,并且受到相同问题的困扰。原创 2023-04-20 17:52:08 · 171 阅读 · 0 评论 -
2020, Q1(Expert Syste), A novel method based on sr for interpretable semantic similarity measurement
自动度量文本表达式之间语义相似程度的问题是一个挑战,即根据人们的判断,计算两个没有或很少有共同特征的文本片段之间的相似程度。近年来,一些机器学习方法已经能够在准确性方面建立一个新的最先进的状态,但没有或很少关注它们的可解释性,即最终用户能够在多大程度上理解这些方法输出的原因。虽然这种基于符号回归的解决方案在聚类领域已经存在,但我们在这里提出了一种新的方法,在语义文本相似的情况下,能够在不牺牲准确性的情况下达到较高的可解释性。原创 2023-04-15 10:58:34 · 197 阅读 · 0 评论 -
2016,GPEM,Subtree semantic geometric crossover for genetic programming
设。原创 2023-04-14 20:48:21 · 216 阅读 · 0 评论 -
2022, Data types as a more ergonomic frontend for Grammar-Guided Genetic Programming
遗传程序设计( Genetic Programming,GP )是一种启发式方法,可以应用于许多机器学习、优化和工程问题。特别地,它在软件工程中的测试用例生成、程序合成和软件改进( GI )中得到了广泛的应用。基于 Grammar-Guided 的遗传编程( GGGP )方法允许用户精化有效程序解的领域。Backus 范式是描述GGGP上下文无关文法( Context-Free grams,CFG )最流行的接口。BNF 及其衍生工具存在语法语言与程序目标语言交错的缺点。原创 2023-05-17 09:44:15 · 318 阅读 · 0 评论 -
2014,EuroGP,Semantic crossover based on the partial derivative error
语义遗传算子的发展对于提高遗传编程的性能有着极大的兴趣。语义遗传算子传统上是通过实验或基于理论的方法开发的。我们目前的工作提出了一种在两种传统方法中发展起来的新的语义交叉。我们提出的语义交叉算子是基于使用通过树传播的误差的导数。这个过程决定了第二个父代的交叉点。结果表明,我们的方法提高了遗传规划在理性符号回归问题上的性能。原创 2023-04-14 16:09:52 · 86 阅读 · 0 评论 -
2022, Q1(Applied Soft Computing), Semantics in Multi-objective Genetic Programming
语义已成为遗传程序设计 (GP) 研究的重点课题。语义是指 GP 个体在数据集上运行时的输出(行为)。大多数关注单目标 GP 中语义多样性的工作表明它在进化搜索中是非常有益的。令人惊讶的是,多目标 GP (Multi-Objective GP,MOGP) 在语义方面的研究微乎其微。在这项工作中,我们超越了对 MOGP 中语义的理解,提出了 SDO:基于语义距离作为一个额外的标准。这自然鼓励了 MOGP 中的语义多样性。为此,我们在第一个帕累托前沿(最有前途的前沿)的密度较小区域找到一个支点。原创 2023-04-09 14:57:45 · 486 阅读 · 0 评论 -
2003,EuroGP,Improving Symbolic Regression with Interval Arithmetic and Linear Scaling
保护算子和平方误差测度的使用是符号回归中的标准方法。可以看出,对一个符号回归系统进行两次相对较小的修改就可以使导出表达式的预测性能和可靠性得到很大的提高。为了实现这一点,使用了区间运算和线性缩放。实验部分展示了对15个符号回归问题的改进。原创 2023-04-08 18:45:00 · 128 阅读 · 0 评论 -
2020, SEC, Semantic Approximation for Reducing Code Bloat in Genetic Programming
Code bloat 是遗传规划 (Genetic Programming,GP) 中的一种现象,其特征是在进化过程中个体规模增大而适应度没有相应的提高。膨胀负向影响 GP 的表现,因为大个体评估更耗时,更难解释。在本文中,我们基于语义近似技术提出了两种减少 GP 代码膨胀的方法。第一种方法是用一个较小的近似语义树代替个体中的随机子树。第二种方法是将一个随机子树替换为一个语义上接近期望语义的更小的树。我们在大量的回归问题上对提出的方法进行了评估。原创 2023-04-08 18:18:42 · 183 阅读 · 0 评论 -
2020,CEC,Instance Selection for Geometric Semantic Genetic Programming
论文年份:2020,论文被引:原创 2023-04-08 14:55:22 · 495 阅读 · 0 评论 -
2017,EuroGP,Geometric Semantic Crossover with an Angle-Aware Mating Scheme in GP for SR
角度驱动,先锦标赛选择出一个个体,然后计算另一个角度最大的个体,作为另一个父代。原创 2023-04-07 13:46:48 · 157 阅读 · 0 评论 -
2015,GECCO,Comparison of Semantic-aware Selection Methods in Genetic Programming
本文研究了遗传编程 (GP) 中几种语义感知选择方法的性能。特别地,我们考虑不依赖于完全 GP 语义(也就是说, 一个程序为 fitness cases 产生的输出元组)),而是依赖于二进制结果向量的方法,这些结果向量仅表示给定的测试是否被程序通过。这使得我们可以将协同进化算法领域中通常考虑的基于测试的问题联系起来,并有望解决更广泛的实际问题,特别是期望程序输出未知的问题(例如, evolving GP controllers)。原创 2023-04-06 09:52:55 · 149 阅读 · 0 评论 -
2022,中科院二区(Advances in Engineering Software),Semantic Cluster Operator for SR and Its Applications
设程序为。原创 2023-04-06 09:41:18 · 630 阅读 · 0 评论 -
2020,EuroGP,SGP-DT: Semantic Genetic Programming Based on Dynamic Targets
语义 GP 是在遗传进化过程中引入语义意识的一种很有前途的方法。本文提出了一种新的基于动态目标的语义 GP 方法 (SGP-DT),将搜索问题划分为多个 GP 运行。每次运行中的演化由基于残差的新(动态)目标引导。为了得到最终解,SGP-DT 采用线性缩放的方式对每次运行的解进行合并。SGP-DT 提出了一种新的方法来产生不依赖于经典交叉的子代。这种方法与线性缩放之间的协同作用使得最终解具有较低的近似误差和计算成本。我们在八个著名的数据集上评估 SGP-DT,并与最先进的进化技术ϵ。原创 2023-04-03 15:39:39 · 161 阅读 · 0 评论 -
轻松入门基因表达式编程 (GEP)
轻松入门基因表达式编程 (GEP)原创 2022-12-22 20:57:20 · 3423 阅读 · 1 评论 -
遗传编程(Genetic Programming, GP)
遗传编程(Genetic Programming, GP)原创 2022-12-23 18:23:48 · 2838 阅读 · 4 评论 -
基于遗传编程的符号回归(gplearn 介绍)
基于遗传编程的符号回归原创 2022-12-23 18:40:00 · 7763 阅读 · 3 评论 -
2022, GECCO,Taylor Genetic Programming for Symbolic Regression
论文年份:2022,论文被引:(2023)原创 2023-04-03 09:28:33 · 490 阅读 · 0 评论 -
2019,EC, A probabilistic and multi-objective analysis of lexicase selection and ε-lexicase selection
论文年份:2019,论文被引:(2023)原创 2023-04-03 09:22:07 · 227 阅读 · 0 评论 -
2019,GECCO,Linear scaling with and within semantic backpropagation-based genetic programming for SR
论文年份:2019,论文被引:(2023)原创 2023-04-03 09:20:32 · 134 阅读 · 0 评论 -
2018,TEVC, Improving Generalisation of GP for SR with Angle-Driven Geometric Semantic Operators
论文年份:2018,论文被引:54(2023)原创 2023-03-16 09:16:57 · 285 阅读 · 0 评论 -
【遗传规划/计算智能】 彻底学会 DEAP 框架,从零搭建 GP
【遗传规划/计算智能】 彻底学会 DEAP 框架,从零搭建 GP原创 2023-02-26 18:51:53 · 9235 阅读 · 5 评论 -
2012, PPSN,Geometric Semantic Genetic Programming,GSGP
论文年份:2012,论文被引:(2023)原创 2023-02-04 09:35:38 · 371 阅读 · 0 评论 -
2017,TEVC,Feature Selection to Improve Generalisation of Genetic Programming for High-Dimensional SR
论文年份:2017,论文被引:(2023)原创 2023-02-02 15:59:20 · 304 阅读 · 0 评论 -
2021,Contemporary symbolic regression methods and their relative performance
论文年份:2021,论文被引:(2023)原创 2023-02-02 15:58:31 · 766 阅读 · 0 评论