平衡二叉树(AVL)

阅读之前请先了解 二叉搜索树 | 二叉查找树 | 二叉排序树 (Binary Search Tree,简称 BST)

1. 为什么使用「平衡二叉树」

二叉搜索树能提高查询的效率 O(logn),但是当你插入 {1,2,3,4,5,6} 这种数据的时候,你的二叉树就像一个「链表」一样,搜索效率变为 O(n)
在这里插入图片描述

于是在 1962 年,一个姓 AV 的大佬(G. M. Adelson-Velsky) 和一个姓 L 的大佬( Evgenii Landis)提出「平衡二叉树」(AVL) 。

插入 {1,2,3,4,5,6} 这种数据结果如下图所示:
在这里插入图片描述

2. 判断「平衡二叉树」

判断「平衡二叉树」的 2 个条件:

    1. 是「二叉排序树」
    1. 任何一个节点的左子树或者右子树都是「平衡二叉树」(左右高度差小于等于 1)

(1)下图不是「平衡二叉树」因为它不是「二叉排序树」违反第 1 条件
在这里插入图片描述

(2)下图不是「平衡二叉树」因为有节点子树高度差大于 1 违法第 2 条件

在这里插入图片描述

(3)下图是「平衡二叉树」因为符合 1、2 条件
在这里插入图片描述

3. 相关概念

3.1 平衡因子 BF(Balance Factor)

  • 定义: 左子树和右子树高度差
  • 计算: 左子树高度 - 右子树高度的值(可能是负值,表示右子树高于左子树)

一般来说 BF 的绝对值大于 1,,平衡树二叉树就失衡,需要「旋转」纠正

3.2 最小不平衡子树

最小不平衡子树: 在新插入的结点向上查找,以第一个平衡因子的绝对值超过 1 的结点**(平衡因子 BF 变成了 -2 或 2)**为根的子树称为最小不平衡子树。也就是说,一棵失衡的树,是有可能有多棵子树同时失衡的。而这个时候,我们只要调整最小的不平衡子树,就能够将不平衡的树调整为平衡的树。

「旋转」纠正只需要纠正「最小不平衡子树」即可
在这里插入图片描述

4. 二种旋转方式

2 种「旋转」方式:

  • 左旋
    • 旧根节点为新根节点的左子树
    • 新根节点的左子树(如果存在)为旧根节点的右子树
  • 右旋:
    • 旧根节点为新根节点的右子树
    • 新根节点的右子树(如果存在)为旧根节点的左子树

右旋


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


左旋

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述

5. 4 种「旋转」纠正类型:

  • LL 型:插入左孩子的左子树导致不平衡,右旋
  • RR 型:插入右孩子的右子树导致不平衡,左旋
  • LR 型:插入左孩子的右子树导致不平衡,先左旋,再右旋
  • RL 型:插入右孩子的左子树导致不平衡,先右旋,再左旋

在这里插入图片描述
在这里插入图片描述

5.1 LL 型失衡「右旋」

由于在被破坏节点的的左孩子 (L) 的左子树 (L) 上插入新结点,使原来平衡二叉树变得不平衡,此时 A 的平衡因子由 1 增至 2。

如下: 第三个节点「1」插入的 时候,BF(3) = 2,BF(2) = 1,LL 型失衡,右旋,根节点顺时针旋转

在这里插入图片描述
在这里插入图片描述在这里插入图片描述

5.2 RR 型失衡「左旋」

由于在被破坏节点的右孩子(R)的右子树(R)上插入了新结点,平衡因子由 -1 减至 -2,导致以被破坏节点为根的子树失去平衡,需要一次向左的旋转操作。

如下: 第三个节点「3」插入的 时候,BF(1)=-2 BF(2)=-1,RR 型失衡,左旋,根节点逆时针旋转
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

5.3 LR 型

LR平衡旋转(先左后右双旋转)。由于在被破坏节点的左孩子(L)的右子树(R)上插入新结点,被破坏节点的平衡因子由1增至2,导致以被破坏节点为根的子树失去平衡,需要进行两次旋转操作,先左旋转后右旋转。先将被破坏结点的左孩子1的右子树的根结点2向左上旋转提升到1结点的位置,然后再把该2结点向右上旋转提升到1结点的位置

如下: 第三个节点「2」插入的 时候,BF(3)=2 BF(1)=-1, LR 型失衡,先「左旋」变为 LL 型,再「右旋」
在这里插入图片描述

(1)最小不平衡子树左子树 {2,1} 先左旋
在这里插入图片描述

(2)最小不平衡子树 {3,2,1} 再右旋
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述

5.4 RL 型

第三个节点「1」插入的 时候,BF(1)=-2 BF(3)=1 RL 型失衡,先「右旋」再「左旋」

在这里插入图片描述

(1)最小不平衡子树根节点右子树{3,2}先右旋
在这里插入图片描述

(2)最小不平衡子树 {1,2,3} 再左旋(L)

在这里插入图片描述

在这里插入图片描述

5. 实例

实例一

接下来以 {3,2,1,4,5,6,7,10,9,8} 为实例练习刚刚的 4 种插入方式

(1)依次插入 3、2、1 插入第三个点 1 的时候 BF(3)=2 BF(2)=1,LL 型失衡。对最小不平衡树 {3,2,1}进行「右旋」
在这里插入图片描述

(2)依次插入 4 ,5 插入 5 点的时候 BF(3) = -2 BF(4)=-1,RR 型失衡。对最小不平衡树 {3,4,5} 进行「左旋」
在这里插入图片描述

(3)插入 4 ,5 插入 5 点的时候 BF(2)=-2 BF(4)=-1 ,RR 型失衡 对最小不平衡树进行「左旋」

在这里插入图片描述
在这里插入图片描述

(4)插入 7 节点的时候 BF(5)=-2, BF(6)=-1 ,RR 型失衡,对最小不平衡树 进行「左旋」
在这里插入图片描述

(5)依次插入 10 ,9 。插入 9 点的时候 BF(10) = 1,BF(7) = -2 ,RL 型失衡,先「右旋」再「左旋」
在这里插入图片描述
在这里插入图片描述

(6)最后插入节点 8 ,BF(6)=-2 BF(9)=1,RL 型失衡,先「右旋」再「左旋」
在这里插入图片描述
在这里插入图片描述

结束
在这里插入图片描述

实例二

选取一组数据分别为2,1,0,3,4,5,6,9,8,7的10个结点来构造平衡二叉树。

首先数据为2的结点作为根结点插入,接着插入1,仍是平衡的,再插入0是,2的平衡因子变为2,此时出现了不平衡,因此需要进行调整,最低不平衡结点为2,属于LL型,调整过程如图所示。
在这里插入图片描述

接着插入3,是平衡的,再插入4,此时出现了不平衡,结点 1 和 2 的平衡因子都为 -2,结点2为最低不平衡结点,属于RR型,调整过程如图所示
在这里插入图片描述

接着插入5,此时结点 1 的平衡因子为 -2,导致不平衡,结点1为最低不平衡结点,属于RR型,调整如图所示。
在这里插入图片描述

接着插入6,此时结点4的平衡因子为 -2,导致不平衡,结点4为最低不平衡结点,属于RR型,调整如图所示。
在这里插入图片描述

接着插入9,是平衡的,再插入8,此时结点 3、5、6 的平衡因子都为 -2,导致不平衡,结点6为最低不平衡结点,属于RL型,调整如图所示。
在这里插入图片描述

插入7,此时结点3、5的平衡因子为 -2,导致不平衡,最低不平衡结点为5,属于RL型,调整如图所示。
在这里插入图片描述

6.代码实现

6.1 定义节点

public class AVLNode {
    /** 数据 **/
    public int data;
    /** 相对高度 **/
    public int height;
    /** 父节点 **/
    public AVLNode parent;
    /** 左子树 **/
    public AVLNode left;
    /** 右子树 **/
    public AVLNode right;
    public AVLNode(int data) {
        this.data = data;
        this.height = 1;
    }
}

6.2 计算高度

节点高度等于左子树和右子树最大高度 + 1

/** 通过子树高度 计算高度 **/
private int calcHeight(AVLNode root) {
    if (root.left == null && root.right == null) {
        return 1;
    }
    else if (root.right == null) {
        return root.left.height + 1;
    } else if (root.left == null) {
        return root.right.height + 1;
    }else {
        return root.left.height > root.right.height ? root.left.height + 1 : root.right.height + 1;
    }
}

6.3 计算 BF

BF(平衡因子)的值为:左子树高度 - 右子树高度

private int calcBF(AVLNode root) {
    if (root == null){
        return 0;
    }
    else if (root.left == null && root.right == null) {
        return 0;
    }
    else if (root.right == null) {
        return root.left.height ;
    } else if (root.left == null) {
        return - root.right.height;
    }else {
        return root.left.height - root.right.height;
    }
}

6.4 旋转

2 种「旋转」方式:

  • 左旋
    • 旧根节点为新根节点的左子树
    • 新根节点的左子树(如果存在)为旧根节点的右子树
  • 右旋:
    • 旧根节点为新根节点的右子树
    • 新根节点的右子树(如果存在)为旧根节点的左子树

重点理解: 旋转之后通过需要刷新高度

高度变化只有: oldRoot 和 newRoot

但是它们子树的高度是不变的(这很关键)

我们可以通过它们 子树的高度计算他们的高度

使用不变的因数计算变化的因素是一个很好的思维

public AVLNode leftRotate(AVLNode root) {
    AVLNode oldRoot = root;
    AVLNode newRoot = root.right;
    AVLNode parent = root.parent;
    //1.newRoot 替换 oldRoot 位置
    if (null != parent ) {
        if (oldRoot.parent.data > oldRoot.data) {
            parent.left = newRoot;
        }else  {
            parent.right = newRoot;
        }
    }
    newRoot.parent = parent;
    //2.重新组装 oldRoot (将 newRoot 的左子树 给 oldRoot 的右子树)
    oldRoot.right = newRoot.left;
    if (newRoot.left != null) {
        newRoot.left.parent = oldRoot;
    }
    //3. oldRoot 为 newRoot 的左子树
    newRoot.left = oldRoot;
    oldRoot.parent = newRoot;
    //刷新高度
    oldRoot.height = calcHeight(oldRoot);
    newRoot.height = calcHeight(newRoot);
    return newRoot;
}


public AVLNode rightRotate(AVLNode root) {
    AVLNode oldRoot = root;
    AVLNode newRoot = root.left;
    AVLNode parent = root.parent;
    //1.newRoot 替换 oldRoot 位置
    if (null != parent ) {
        if (oldRoot.parent.data > oldRoot.data) {
            parent.left = newRoot;
        }else {
            parent.right = newRoot;
        }
    }
    newRoot.parent = parent;
    //2.重新组装 oldRoot (将 newRoot 的右子树 给 oldRoot 的左子树)
    oldRoot.left = newRoot.right;
    if (newRoot.right != null) {
        newRoot.right.parent = oldRoot;
    }
    //3. oldRoot 为 newRoot 的左子树
    newRoot.right = oldRoot;
    oldRoot.parent = newRoot;
    //刷新高度
    oldRoot.height = calcHeight(oldRoot);
    newRoot.height = calcHeight(newRoot);
    return newRoot;
}

6.5 插入(总代码)

插入操作

  • 递归插入新节点
  • 刷新高度
  • 旋转并再次刷新高度
public class ALVTree {
    AVLNode root;
    public void insert(int data) {
        if (null == this.root) {
            this.root = new AVLNode(data);
            return;
        }
        this.root = insert(this.root, data);
    }
    public AVLNode insert(AVLNode root, int data) {
        //插入左子树
        if (data < root.data) {
            if (null == root.left) {
                root.left = new AVLNode(data);
                root.left.parent = root;
            }else {
                insert(root.left,data);
            }
        }
        //插入右子树
        else if (data > root.data) {
            if (null == root.right) {
                root.right = new AVLNode(data);
                root.right.parent = root;
            } else {
                insert(root.right,data);
            }
        }
        //刷新高度
        root.height = calcHeight(root);
        //旋转
        //1. LL 型 右旋转
        if (calcBF(root) == 2){
            //2. LR 型 先左旋转
            if (calcBF(root.left) == -1) {
                root.left = leftRotate(root.left);
            }
            root = rightRotate(root);
        }
        //3. RR型 左旋转
        if (calcBF(root) == -2){
            //4. RL 型 先右旋转
            if (calcBF(root.right)== 1) {
                root.right = rightRotate(root.right);
            }
            root = leftRotate(root);
        }

        return root;
    }
    public AVLNode leftRotate(AVLNode root) {
        AVLNode oldRoot = root;
        AVLNode newRoot = root.right;
        AVLNode parent = root.parent;
        //1.newRoot 替换 oldRoot 位置
        if (null != parent ) {
            if (oldRoot.parent.data > oldRoot.data) {
                parent.left = newRoot;
            }else  {
                parent.right = newRoot;
            }
        }
        newRoot.parent = parent;
        //2.重新组装 oldRoot (将 newRoot 的左子树 给 oldRoot 的右子树)
        oldRoot.right = newRoot.left;
        if (newRoot.left != null) {
            newRoot.left.parent = oldRoot;
        }
        //3. oldRoot 为 newRoot 的左子树
        newRoot.left = oldRoot;
        oldRoot.parent = newRoot;
        //刷新高度
        oldRoot.height = calcHeight(oldRoot);
        newRoot.height = calcHeight(newRoot);
        return newRoot;
    }


    public AVLNode rightRotate(AVLNode root) {
        AVLNode oldRoot = root;
        AVLNode newRoot = root.left;
        AVLNode parent = root.parent;
        //1.newRoot 替换 oldRoot 位置
        if (null != parent ) {
            if (oldRoot.parent.data > oldRoot.data) {
                parent.left = newRoot;
            }else {
                parent.right = newRoot;
            }
        }
        newRoot.parent = parent;
        //2.重新组装 oldRoot (将 newRoot 的右子树 给 oldRoot 的左子树)
        oldRoot.left = newRoot.right;
        if (newRoot.right != null) {
            newRoot.right.parent = oldRoot;
        }
        //3. oldRoot 为 newRoot 的左子树
        newRoot.right = oldRoot;
        oldRoot.parent = newRoot;
        //刷新高度
        oldRoot.height = calcHeight(oldRoot);
        newRoot.height = calcHeight(newRoot);
        return newRoot;
    }
    /** 通过子树高度 计算高度 **/
    private int calcHeight(AVLNode root) {
        if (root.left == null && root.right == null) {
            return 1;
        }
        else if (root.right == null) {
            return root.left.height + 1;
        } else if (root.left == null) {
            return root.right.height + 1;
        }else {
            return root.left.height > root.right.height ? root.left.height + 1 : root.right.height + 1;
        }
    }
    private int calcBF(AVLNode root) {
        if (root == null){
            return 0;
        }
        else if (root.left == null && root.right == null) {
            return 0;
        }
        else if (root.right == null) {
            return root.left.height ;
        } else if (root.left == null) {
            return - root.right.height;
        }else {
            return root.left.height - root.right.height;
        }
    }
}

AVL树的问题

既然AVL树可以保证二叉树的平衡,这就意味着AVL搜索的时候,它最坏情况的时间复杂度O(logn) ,要低于普通二叉树BST和链表的最坏情况O(n)。

那么HashMap直接使用AVL树来替换链表就好了,为什么选择用红黑树呢?

原因是:

由于AVL树必须保证左右子树平衡,Max(最大树高-最小树高) <= 1,

所以在插入的时候很容易出现不平衡的情况,一旦这样,就需要进行旋转以求达到平衡。

正是由于这种严格的平衡条件,导致AVL需要花大量时间在调整上,故AVL树一般使用场景在于查询场景, 而不是 增加删除 频繁的场景。

红黑树(rbt)做了什么优化呢?

红黑树(rbt)继承了AVL可自平衡的优点,

同时, 红黑树(rbt)在查询速率和平衡调整中寻找平衡,放宽了树的平衡条件,从而可以用于 增加删除 频繁的场景。

在实际应用中,红黑树的使用要多得多。

References

平衡二叉树详解 通俗易懂

平衡二叉树

平衡二叉树AVL树定义、插入以及调整最小不平衡子树(C语言)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值