自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(97)
  • 收藏
  • 关注

原创 HydroBASINS

本文是HydroBASINS技术文档版本1.c,介绍了全球尺度的流域边界和子流域划分数据。该数据基于HydroSHEDS数据,分辨率为15秒,旨在提供一致大小和分层嵌套的子流域,支持分析流域拓扑结构(如上下游连通性)。HydroBASINS数据以多边形图层形式提供,覆盖全球,分为标准版(无湖泊)和定制版(含湖泊)两种格式。数据以ESRI shapefile格式分发,投影为地理坐标系(WGS84)。用户在使用数据时需遵守许可协议,并在发表成果时引用相关文献。

2025-06-10 16:33:42 472

原创 【阅读文献笔记】Mamba Integrated with Physics Principles MastersLong-term Chaotic System Forecasting

长期从短期观测数据中预测混沌系统的演变是一个基本且尚未充分研究的挑战,因为混沌系统对初始条件极为敏感,且其奇异吸引子的复杂几何结构使得预测变得困难。现有的方法通常依赖于长期训练数据,或者只关注短期序列相关性,在长期预测中难以保持预测的稳定性和动力学一致性。我们提出了 PhyxMamba,这是一个新颖的框架,它将基于 Mamba 的状态空间模型与物理原理相结合,用于捕捉混沌系统的底层动力学。通过使用时间延迟嵌入重构吸引子流形,PhyxMamba 提取了对准确预测至关重要的全局动力学特征。

2025-06-06 10:46:05 660

原创 特征分析工程化

scikit-feature 是一个开源的 Python 特征选择库,由亚利桑那州立大学数据挖掘与机器学习实验室开发。scikit-feature 包含大约 40 种流行的特征选择算法,包括传统的特征选择算法以及一些结构化和流式特征选择算法。它旨在为特征选择的应用、研究和比较研究提供一个平台,分享特征选择研究中广泛使用的特征选择算法,并为研究人员和实践者在开发新的特征选择算法时进行实证评估提供便利。Python 中的特征选择存储库 scikit-feature。包括许多可视化方法来检查数据集的特征。

2025-05-30 09:38:34 464

原创 【阅读文献笔记】Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting

本文提出了一种新颖的基于注意力机制的空间-时间图卷积网络(ASTGCN)模型,用于交通流量预测。ASTGCN主要由三个独立的组件构成,分别用于建模交通流量的三种时间特性,即近期、日周期和周周期依赖性。每个组件包含两个主要部分:空间-时间注意力机制和空间-时间卷积。空间-时间注意力机制能够有效捕捉交通数据的动态空间-时间相关性;空间-时间卷积则同时利用图卷积捕捉空间模式和标准卷积描述时间特征。三个组件的输出通过加权融合生成最终预测结果。

2025-05-25 20:20:55 910

原创 【阅读文献笔记】ITRANSFORMER: INVERTED TRANSFORMERS ARE EFFECTIVE FOR TIME SERIES FORECASTING

Transformer 近年来在自然语言处理和计算机视觉领域取得了巨大成功,但其在时间序列预测中的应用却面临挑战。传统基于 Transformer 的预测器通过将同一时间戳的多个变量嵌入为一个“时间标记”,并利用注意力机制捕捉时间依赖性。然而,这种方法在处理具有较大回溯窗口的时间序列时,性能会下降且计算量激增。此外,这种嵌入方式可能会丢失变量间的多变量相关性,导致注意力图谱变得无意义。

2025-05-25 19:31:42 720

原创 【阅读文献笔记】基于深度学习的水文要素模拟与预测研究

本文主要研究深度学习在水文要素模拟与预测方面的应用效果,通过构建Conv-TALSTM模型和Seq2Seq模型,分别对径流和水位进行模拟与预测,并与传统物理模型和机器学习模型进行对比分析。

2025-05-25 19:00:16 897

原创 【阅读文献笔记】基于CNN-BiLSTM模型的平原型水库洪水预报研究

在平原型水库反推入库流量过程中,存在明显的噪声干扰,导致传统的洪水预报方法精度下降。对此,提出一种结合卷积神经网络(CNN)与双向长短期记忆神经网络(BiLSTM)的入库洪水预报模型,该模型采用CNN 的卷积层挖掘入库洪水数据中的深层特征信息,并赋予不重要特征较低的权重,以便模型更加专注于对目标任务关键的特征信息。此外,利用BiLSTM 处理流量序列中的长期依赖问题,通过其遗忘门有选择性地过滤掉权重较低的特征信息,实现对入库洪水过程的准确预测。

2025-05-25 18:39:03 893

原创 【阅读文献笔记】Spatio-temporal directed acyclic graph learning with attention mechanisms on brain functiona

本文开发了一种深度学习框架 ST-DAG-Att,用于利用功能磁共振成像(fMRI)预测认知和疾病。ST-DAG-Att 框架包含两个神经网络:((2)此外,该框架还包括一个两个网络均设计为有向无环图(DAG)结构的前馈模型。实验使用青少年大脑认知发展(ABCD,n=7693)和开放访问影像研究-3(OASIS-3,n=1786)两个大型数据集,结果表明 ST-DAG-Att 模型可从认知预测推广到年龄预测,对 ABCD 研究不同地点的独立样本具有鲁棒性,并优于现有机器学习技术。

2025-05-25 15:10:05 710

原创 【阅读文献笔记】Titans: Learning to Memorize at Test Time

在超过十年的研究中,人们一直在探索如何有效地利用循环模型和注意力机制。循环模型旨在将数据压缩到固定大小的内存(称为隐藏状态),而注意力允许关注整个上下文窗口,捕捉所有标记之间的直接依赖关系。然而,这种对依赖关系更准确的建模伴随着二次成本,限制了模型的上下文长度。我们提出了一种新的神经长期记忆模块,能够学习记忆历史上下文,并帮助注意力在利用长期过去信息的同时关注当前上下文。我们表明,这种神经记忆具有快速并行训练的优势,同时保持快速推理。

2025-05-25 14:57:16 740

原创 【阅读文献笔记】水文情报预报规范解读:洪水预测领域的技术指南(精度评级)

当CET>1.00为超前预报,它是在洪峰预报 依 据要素尚未出现时发布的洪峰预报,预报时效达不到丙级者为时效不合格。1)取预见期内实测变幅的20%作为许可误差,当该流量小于实测值的5%,当水位许可误差小于以相应流量的5%对应的水位幅度值或小于0.10m时,则以该值作为许可误差。a)当一个预报方案包含多个预报要素时,预报方案的合格率为各预报要素合格率的算术平均值,其精度等级仍按表l的规定确定;b)当主要要素的合格率低于各预报要素合格率的算术平均值时,以主要要素的合格率等级作为预报方案的精度等级。

2025-05-23 18:29:44 624

原创 时间序列中的白噪声:理解、应用与代码示例

白噪声是时间序列分析中一个重要的概念。它具有均值为 0、方差恒定且各时刻不相关等特性,是一种特殊的平稳时间序列。白噪声在模型评估、基准比较以及随机数据生成等方面有广泛的应用。通过对时间序列进行白噪声检验,可以判断序列是否包含可利用的信息,从而为模型的选择和改进提供依据。在实际应用中,我们常常希望模型的残差序列接近白噪声,以确保模型能够充分捕捉数据中的规律。

2025-05-23 17:25:36 1166

原创 基于 ACF 与 PACF 的洪水预测分析:方法、应用及代码示例

ACF 自相关法和 PACF 偏自相关法在洪水预测中具有重要作用。ACF 能够揭示洪水时间序列的自相关模式,帮助我们了解洪水的平稳性和季节性等特征;PACF 则侧重于反映序列之间的直接相关性,为自回归模型的阶数选择提供依据。通过联合运用 ACF 和 PACF,可以更准确地识别洪水时间序列的统计特性,建立合适的预测模型,提高洪水预测的精度,从而为防洪减灾工作提供有力支持。在未来的研究中,我们还可以结合其他先进的数据分析方法和模型,进一步优化洪水预测技术,更好地应对洪水灾害带来的挑战。

2025-05-23 16:54:48 957

原创 【阅读文献笔记】考虑水文机理的深度学习径流预测模型及其可解释性

本文旨在提升深度学习模型的日径流预测精度,增强模型的可信度,通过引入水文模型的物理过程作为深度学习模型的输入。研究将新安江模型不同模块的输出数据作为额外特征输入,分别应用于GRU、GRU-Seq2seq-Attention两种深度学习模型中,分析不同输入特征和模型结构对径流预测结果的影响,并采用积分梯度法对深度学习模型进行可解释性分析。结果表明,引入不同输入特征显著提升了模型径流预测的精度,其中GRU-Seq2seq-Attention模型在考虑模拟产流时预测精度最优。

2025-05-23 14:42:57 806

原创 【阅读文献笔记】辉发河干流洪水风险分析

辉发河流域概况:包括地理位置、流域特征、气候条件、降水分布以及支流分布情况。洪水特性分析:研究辉发河流域洪水的形成原因、发生特点和洪水过程,重点分析夏汛洪水的特性。防洪工程现状:分析辉发河干流的防洪体系,包括水库和堤防的分布、规模及其防洪能力。洪水风险分析:通过数值模拟计算不同频率洪水的淹没范围、水深、流速以及洪水到达时间等关键指标,评估洪水对沿岸地区的潜在风险。结论与建议:根据研究结果,提出针对辉发河干流防洪工程的改进建议,为区域防洪规划提供参考。

2025-05-23 14:07:59 1158

原创 【阅读文献笔记】TCPFormer: Learning Temporal Correlation with Implicit Pose Proxy for 3D Human Pose Estimati

本文提出了一种名为 TCPFormer 的方法,用于学习 3D 人体姿态估计中的时间相关性。现有的多帧提升方法虽然在 3D 人体姿态估计中取得了显著进展,但它们忽略了 2D 姿态序列内的复杂依赖关系,仅学习了单一的时间相关性。为了克服这一限制,我们引入了隐式姿态代理(implicit pose proxy)作为中间表示。隐式姿态代理中的每个代理都可以建立一个时间相关性,从而帮助我们学习到更全面的人体运动时间相关性。

2025-05-21 14:04:29 750

原创 【阅读文献笔记】GraphMLP: A Graph MLP-Like Architecture for 3D Human Pose Estimation

本文提出了一种简单而有效的图强化型多层感知机(GraphMLP)架构,用于三维人体姿态估计。该架构结合了多层感知机(MLP)和图卷积网络(GCN)的优势,构建了一个全局-局部-图统一的架构。GraphMLP通过将人体的图结构融入MLP模型中,能够捕捉局部和全局的空间交互,并利用图的连通性来建模人体姿态。此外,该架构还被扩展到视频领域,能够以极低的计算成本有效处理复杂的时序动态信息。实验表明,GraphMLP在Human3.6M和MPI-INF-3DHP数据集上均取得了最先进的性能。

2025-05-21 12:13:50 553

原创 【阅读文献笔记】MotionBERT: A Unified Perspective on Learning Human Motion Representations

跨任务学习:展示了如何通过预训练任务学习通用的特征表示,并将其应用于多个相关任务,为跨任务学习提供了新的思路。异构数据利用:强调了整合不同类型数据资源的重要性,为处理大规模异构数据提供了有效的方法。模型设计:双流时空变换器的设计为处理时空数据提供了新的视角,可以应用于其他需要建模时空关系的任务。

2025-05-21 10:51:35 471

原创 动态配置数据集类和数据加载器

这段代码主要用于数据加载和提供功能,其核心目的是根据不同的任务和数据集配置,从相应的数据源加载数据,并将其封装成 PyTorch 的DataLoader对象,以便在深度学习模型训练、验证和测试时高效地批量获取数据。数据集导入:从模块导入多个数据集类,同时导入collate_fn函数和 PyTorch 的DataLoader类。数据集映射字典:创建data_dict字典,将数据集名称映射到对应的数据集类,方便根据数据集名称动态选择合适的数据集类。数据提供函数:定义函数,根据传入的参数args。

2025-03-12 17:10:35 334

原创 ADF 测试(计算时间序列数据是否平稳)

这些代码的主要目的是对时间序列数据进行 ADF 检验,以判断数据的平稳性。函数对除date列之外的所有列进行检验,函数对指定的目标列进行检验,archADF函数计算除第一列之外所有列 ADF 检验统计量的平均值。

2025-03-12 16:40:03 695

原创 数据增强方法

discriminative_guided_warp:基于类别的动态时间规整增强方法,目的是利用相似类别的样本来进行时序数据的增强。scaling:通过随机的放大或缩小,改变数据的尺度(比如对时间序列的每个维度进行比例缩放)。spawner:将数据切割成两部分,进行拼接生成新的数据,通常用于模拟某种数据的组合模式。magnitude_warp:对数据的幅度进行变换(例如,通过插值改变数据的曲线形状)。time_warp:对数据的时间轴进行扭曲,改变数据的时间步长。

2025-03-12 16:21:19 211

原创 动态时间规整(DTW)算法

如果`w`是有限值,标题除了包含最小距离`dist`和斜率权重 `s`外,还会显示窗口宽度 `w`,方便用户了解当前计算的关键参数。刻度与标签:`plt.xticks(range(len(x)), x)` 将`x` 轴的刻度设置为序列`x`的索引范围,同时把序列。轴标签 :`plt.xlabel('x')`和`plt.ylabel('y')`分别为 `x`轴和 `y` 轴添加了标签,path[0]`存储了路径在序列 `x` 上的索引,`path[1]`存储了路径在序列 `y`上的索引。

2025-03-12 16:18:39 1312

原创 损失类功能解析:mape_loss(平均绝对百分比误差损失)、smape_loss(对称平均绝对百分比误差损失)、mase_loss(平均绝对标度误差损失)原理、公式及应用场景优势。

MAPEMAPE。

2025-03-12 16:05:14 517

原创 评估回归模型性能的指标函数(洪水水文模型)

6. MAPE (Mean Absolute Percentage Error): 计算预测值与真实值之间差异的绝对值与真实值的比值的平均值。7. MSPE (Mean Squared Percentage Error): 计算预测值与真实值之间差异的平方与真实值的比值的平均值。1. RSE (Root Squared Error): 计算预测值与真实值之间差异的平方根的均值,与真实值的方差均值的平方根的比值。实际应用中,通常会综合多个指标来全面评估洪水和水量预测模型的性能,以确保预测的准确性和可靠性。

2025-03-12 15:52:01 461

原创 计算NSE并绘图

这段代码首先定义了一个计算纳什均衡误差(NSE)的函数 get_NSE,然后定义了一个绘图函数 draw, 用于绘制真实值和预测值的对比图。最后,在 if __name__ == '__main__': 块中,脚本读取一个CSV文件,计算NSE,并调用 draw 函数绘制结果图表。

2025-03-12 15:37:57 146

原创 时序相关代码学习知识点汇总(更新中)

除此之外,nc文件还可以包含一些其他内容,主要是一些关于数据的注释说明,例如数据的来源、数据类型、数据的属性以及获取数据并公布出来的机构名等,这些说明使得数据更具有严谨性和权威性。return df_raw:在这段代码中,意味着函数在完成对df_raw DataFrame的所有处理后,将这个DataFrame作为结果返回给调用这个函数的地方。nc文件的构成大致是将一种数据的各个纬度按照标签独立地存储起来,比如海洋表面温度数据的nc文件,主要包含四个数据标签:海洋表面温度、经度、纬度和时间。

2025-03-12 15:36:52 216

原创 EarlyStopping

EarlyStopping类通过跟踪验证损失,并在损失连续一定次数(patience)没有改善时触发早停。这有助于确保模型在达到最佳性能后及时停止训练,从而提高训练过程的整体效率和效果。

2025-03-12 15:20:52 160

原创 Pandas

pandas是一个非常强大的工具,可以帮助你轻松地加载、清理、转换、分析数据,特别适用于处理表格数据。它的简洁接口和强大的功能使得数据分析变得更加高效和易于理解。如果你需要进行数据处理、探索性数据分析(EDA)或机器学习中的数据预处理,pandas是必备的工具。

2025-03-10 10:44:29 486

原创 水文领域时序模型

水文时序模型有许多种,适用于不同类型的水文数据和问题。对于大多数水文现象(如降水、流量等),线性时序模型(如ARMA、ARIMA)仍然是最常用的方法,但对于复杂的、非线性或长时间依赖的水文数据,深度学习模型(如LSTM)和动态建模方法(如DLM、贝叶斯网络)正在逐渐成为主流。

2025-03-10 10:10:01 1027

原创 时序相关的基本概念和方法

时序分析主要涉及时间序列数据的处理和分析。时间序列数据是指按照时间顺序排列的数据集,常见的应用包括股票市场预测、气候变化分析、经济指标分析等。

2025-03-10 10:06:56 452

原创 多智能体水库调度决策模型

每个智能体代表水库系统中的一个具体操作单位或调度决策者。比如,单个水库、多个水库组合、流域管理者、调度中心等可以作为不同的智能体。

2025-03-10 09:58:40 561 2

原创 Hydro-TS水文时序智能产流预报模型

Hydro-TS(Hydrological Time Series)水文时序智能产流预报模型是一个基于时间序列分析的水文预报模型,主要用于预测流域内的产流过程。这个模型通常结合水文数据(如降水、蒸发、土壤湿度等)和历史水文观测数据,利用智能算法对未来的流量变化进行预测。

2025-03-10 09:56:22 259

原创 基于时空图卷积的流域产流预测模型

基于时空图卷积的流域产流预测模型是一个结合深度学习、图卷积和时间序列分析的多维度模型,能够有效处理流域产流的时空特征,提高预测精度和鲁棒性。这种方法在水资源管理和流域规划等领域具有广泛的应用前景。

2025-03-10 09:50:33 984

原创 【阅读文献笔记】Depth Segmentation Approach for Egocentric 3D Human Pose Estimation with a Fisheye Camera

本文提出了一种用于基于头戴式显示器(HMD)捕获的鱼眼图像的以自我为中心的3D人体姿态估计的新方法。大多数3D姿态估计研究集中在热图回归和将2D信息提升到3D空间。本文通过提出SegDepth模块解决了高度失真的2D鱼眼图像的深度模糊问题,该模块从图像中联合回归分割图和深度图。SegDepth模块通过分割区分与姿态估计直接相关的人体轮廓,并同时估计深度以解决深度模糊问题。提取的分割和深度信息被转换为嵌入信息,并用于3D关节估计。

2025-03-07 17:03:40 711

原创 【阅读文献笔记】FinePOSE: Fine-Grained Prompt-Driven 3D Human Pose Estimation viaDiffusion Models

本文旨在提出一种新的基于扩散模型的细粒度提示驱动的3D人体姿态估计方法——FinePOSE,以解决现有方法在处理单人和多人场景时存在的挑战,如深度模糊性、人体结构复杂性以及模型泛化能力不足等问题,从而提高3D人体姿态估计的准确性和鲁棒性。文章提出了FinePOSE,它包含三个核心模块:摘要摘要摘要FinePOSE 是一种基于扩散模型的 3D 人体姿态估计方法,通过可学习的修饰符(例如“动作类别”、粗细粒度的人体部位包括“人、头、身体、手臂、腿部”以及运动学信息“速度”)实现多粒度操作,提升单人和多人场景下的

2025-03-07 16:01:19 701

原创 【阅读文献笔记】TokenHMR: Advancing Human Mesh Recovery witha Tokenized Pose Representation

对大量运动捕捉数据进行预训练,学习到一个离散的姿态表示,将可能的姿态限制在有效的范围内,减少姿态偏差,并提高对遮挡的鲁棒性。平衡二维关键点的利用和三维姿态的准确性,从而克服现有方法在三维和二维精度之间的固有权衡。对三维姿态进行标记化,将连续的姿态参数转化为离散的标记,通过分类而非回归来预测姿态。,可以有效地利用先验知识,减少模型的输出空间,提高模型的泛化能力和鲁棒性。图中圈出的区域比较了姿态。,如遮挡和数据的不完整性,通过创新的方法提高模型在这些情况下的表现。来减少偏差的影响,同时充分利用数据的优势。

2025-03-07 15:57:14 664

原创 【阅读文献笔记】CBAM:卷积块注意模块

我们提出了卷积块注意模块(Convolutional Block Attention Module, CBAM),这是一种简单而有效的前馈卷积神经网络注意模块。给定一个中间特征图,我们的模块沿着两个独立的维度(通道和空间)顺序地推断注意图, 然后将注意图乘以输入特征图以进行自适应特征细化。由于CBAM是一个 轻量级的通用模块,它可以无缝集成到任何CNN架构中,开销可以忽略不 计,并且可以与基础cnn一起进行端到端训练。

2024-12-29 20:59:08 370

原创 【阅读文献笔记】密集目标检测的焦损

迄今为止精度最高的目标检测器是基于由R-CNN推 广的两阶段方法,其中分类器应用于稀疏的候选目标位置集。相比之下,应用于可能对象位置的常规密集采样的单 阶段检测器具有更快和更简单的潜力,但迄今为止仍落 后于两阶段检测器的准确性。在本文中,我们研究了为什 么会出现这种情况。我们发现,在密集检测器训练过程中遇到的极端前景-背景类不平衡是主要原因。我们建议通过重塑标准交叉熵损失来解决这种类不平衡,从而降低分 配给分类良好的示例的损失的权重。

2024-12-29 20:37:07 876

原创 Python 函数的参数定义规则

解释器需要保证调用函数时能够明确匹配到每个参数的位置。如果非默认参数放在默认参数之后,解释器在解析时会混淆传递顺序,不知道某个值究竟是给哪个参数的。

2024-11-24 09:49:13 314

原创 GFLOPS和MACS

【代码】GFLOPS和MACS。

2024-11-18 16:01:32 611

原创 OSError:[Errno 5]Input/output error

【代码】OSError:[Errno 5]Input/output error。

2024-11-18 15:48:49 1622

RTMPOSE预训练权重

RTMPOSE预训练权重

2024-12-20

config-rtmpose-m-8xb64-210e-mpii-256x256

config-rtmpose-m-8xb64-210e-mpii-256x256

2024-12-20

MLTbias3CAsimcc-CSPNeXt-2xb16-210e-mpii-256x256

MLTbias3CAsimcc-CSPNeXt-2xb16-210e-mpii-256x256

2024-12-17

RTMPOSE rtmpose-m-2xb64-210e-mpii-256x256-A5000

RTMPOSE rtmpose-m-2xb64-210e-mpii-256x256-A5000

2024-12-17

RTMPOSE rtmpose-m-2xb64-210e-mpii-256x256-A5000

RTMPOSE rtmpose-m-2xb64-210e-mpii-256x256-A5000

2024-12-17

RTMPOSE rtmpose-m-2xb64-210e-mpii-256x256-A5000

权重

2024-12-17

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除