题目:
有一个由按钮组成的矩阵, 其中每行有6个按钮, 共5行 – 每个按钮的位置上有一盏灯当按下一个按钮后, 该按钮以及周围位置(上边, 下边, 左 边, 右边)的灯都会改变状态如果灯原来是点亮的, 就会被熄灭如果灯原来是熄灭的, 则会被点亮
• 在矩阵角上的按钮改变3盏灯的状态
• 在矩阵边上的按钮改变4盏灯的状态
• 其他的按钮改变5盏灯的状态
与一盏灯毗邻的多个按钮被按下时,一个操作会抵消另一次操作的结果给定矩阵中每盏灯的初始状态,求一种按按钮方案,使得所有的灯都熄灭
输入:
第一行是一个正整数N, 表示需要解决的案例数每个案例由5行组成, 每一行包括6个数字这些数字以空格隔开, 可以是0或1
– 0 表示灯的初始状态是熄灭的
– 1 表示灯的初始状态点亮的
输出:
对每个案例, 首先输出一行,
输出字符串 “PUZZLE #m”, 其中m是该案例的序号
接着按照该案例的输入格式输出5行
• 1 表示需要把对应的按钮按下
• 0 表示不需要按对应的按钮
• 每个数字以一个空格隔开
样例输入
2
0 1 1 0 1 0
1 0 0 1 1 1
0 0 1 0 0 1
1 0 0 1 0 1
0 1 1 1 0 0
0 0 1 0 1 0
1 0 1 0 1 1
0 0 1 0 1 1
1 0 1 1 0 0
0 1 0 1 0 0
样例输出
PUZZLE #1
1 0 1 0 0 1
1 1 0 1 0 1
0 0 1 0 1 1
1 0 0 1 0 0
0 1 0 0 0 0
PUZZLE #2
1 0 0 1 1 1
1 1 0 0 0 0
0 0 0 1 0 0
1 1 0 1 0 1
1 0 1 1 0 1
#include <iostream>
#include <memory>
#include <cstring>
#include <string>
using namespace std;
int GetBit(char c,int i)//取c的第i位
{
return (c>>i)&1;
}
void SetBit(char & c,int i,int v)//设置c的第i位为v
{
if(v)
c |=(1<<i);
else
c &= ~(1<<i);
}
void Flip(char & c,int i)//将c的第i位为取反
{
c ^=(1<<i);
}
void OutputResult(int t,char result[])//输出结果
{
cout<<"PUZZLE #"<<t<<endl;
for(int i=0;i<5;i++){
for(int j=0;j<6;j++){
cout<<GetBit(result[i],j);
if(j<5)
cout<<" ";
}
cout<<endl;
}
}
int main()
{
char oriLights[5];//最初灯矩阵,一个比特表示一盏灯
char lights[5];//不停变化的灯矩阵
char result[5];//结果开关矩阵
char switchs;//某一行的开关状态
int T;
cin>>T;
for(int t=1;t<=T;t++){
memset(oriLights,0,sizeof(oriLights));
for(int i=0;i<5;i++){
for(int j=0;j<6;j++){
int s;
cin>>s;
SetBit(oriLights[i],j,s);
}
}
for(int n=0;n<64;n++){//遍历首行开关的64种状态
memcpy(lights,oriLights,sizeof(oriLights));
switchs = n;
for(int i=0;i<5;i++){
result[i]=switchs;
for(int j=0;j<6;j++){
if(GetBit(switchs,j)){
if(j>0)
Flip(lights[i],j-1);//改左灯
Flip(lights[i],j);//改开关位置的灯
if(j<5)
Flip(lights[i],j+1);//改右灯
}
}
if(i<4)
lights[i+1] ^=switchs;//改下一行的灯
switchs=lights[i]; //第i+1行开关方案和第i行灯情况同
}
if(lights[4]==0){
OutputResult(t,result);
break;
}
}
}
return 0;
}
题目分析:
第一想法: 枚举所有可能的按钮(开关)状态, 对每个状态计算一下最后灯的情况, 看是否都熄灭
– 每个按钮有两种状态(按下或不按下) – 一共有30个开关, 那么状态数是230, 太多, 会超时
• 如何减少枚举的状态数目呢?
基本思路: 如果存在某个局部, 一旦这个局部的状态被确定,
那么剩余其他部分的状态只能是确定的一种, 或者不多的n 种, 那么就只需枚举这个局部的状态即可
本题是否存在这样的 “局部” 呢?
• 经过观察, 发现第1行就是这样的一个 “局部”
– 因为第1行的各开关状态确定的情况下, 这些开关作用过后, 将导致第1行某些灯是亮的, 某些灯是灭的
要熄灭第1行某个亮着的灯(假设位于第i列), 那么唯一的办法就是按下第2行第i列的开关(因为第1行的开关已经用过了, 而第3行及其后的开关不会影响到第1行)
– 为了使第1行的灯全部熄灭, 第2行的合理开关状态就是唯一的
第2行的开关起作用后, 为了熄灭第2行的灯, 第3行的合理开关状态就也是唯一的以此类推, 最后一行的开关状态也是唯一的
• 只要第1行的状态定下来, 记作A, 那么剩余行的情况就是确定唯一的了
推算出最后一行的开关状态, 然后看看最后一行的开关起作用后, 最后一行的所有灯是否都熄灭:
• 如果是, 那么A就是一个解的状态
• 如果不是, 那么A不是解的状态, 第1行换个状态重新试试
只需枚举第1行的状态, 状态数是26 = 64