300. 最长递增子序列

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

在这里插入图片描述
思路:

要找到最长的递增子序列长度,每当我们找到一个位置,它是继续递增的子序列还是不是,它选择前面哪一处接着才能达到最长的递增子序列,这类有状态转移的问题常用方法是动态规划。

具体做法:

  • step 1:用dp[i]dp[i]dp[i]表示到元素iii结尾时,最长的子序列的长度,初始化为1,因为只有数组有元素,至少有一个算是递增。
  • step 2:第一层遍历数组每个位置,得到n个长度的子数组。
  • step 3:第二层遍历相应子数组求对应到元素iii结尾时的最长递增序列长度,期间维护最大值。
  • step 4:对于每一个到iii结尾的子数组,如果遍历过程中遇到元素j小于结尾元素,说明以该元素结尾的子序列加上子数组末尾元素也是严格递增的,因此转移方程为dp[i]=dp[j]+1dp[i] = dp[j] + 1dp[i]=dp[j]+1。
class Solution {
    public int lengthOfLIS(int[] nums) {
    int[] dp = new int[nums.length];
        Arrays.fill(dp, 1);/*因为至少一个本身的子序列*/
        for (int i = 0; i < dp.length; i++) {
            for (int j = 0; j < i; j++) {
                if (nums[i] > nums[j]) {
                    dp[i] = Math.max(dp[i], dp[j] + 1);
                }
            }
        }
        int res = 0;
        for (int i = 0; i < dp.length; i++) {
            res = Math.max(res, dp[i]);
        }
        return res;
    }
}

在这里插入图片描述
如图
1 ,5,3,4,8
f(1)最长子序列为1
f(2)最长子序列为2
f(3)最长子序列为2
f(4)最长子序列为3
f(5)最长子序列为4
这个时候最大的子序列一定是4嘛?
不一定,假如把8改为5

1 ,5,3,4,0
这时候 f(5) = 1
所以dp = dp[i] =1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爪哇贡尘拾Miraitow

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值