给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
思路:
要找到最长的递增子序列长度,每当我们找到一个位置,它是继续递增的子序列还是不是,它选择前面哪一处接着才能达到最长的递增子序列,这类有状态转移的问题常用方法是动态规划。
具体做法:
- step 1:用dp[i]dp[i]dp[i]表示到元素iii结尾时,最长的子序列的长度,初始化为1,因为只有数组有元素,至少有一个算是递增。
- step 2:第一层遍历数组每个位置,得到n个长度的子数组。
- step 3:第二层遍历相应子数组求对应到元素iii结尾时的最长递增序列长度,期间维护最大值。
- step 4:对于每一个到iii结尾的子数组,如果遍历过程中遇到元素j小于结尾元素,说明以该元素结尾的子序列加上子数组末尾元素也是严格递增的,因此转移方程为dp[i]=dp[j]+1dp[i] = dp[j] + 1dp[i]=dp[j]+1。
class Solution {
public int lengthOfLIS(int[] nums) {
int[] dp = new int[nums.length];
Arrays.fill(dp, 1);/*因为至少一个本身的子序列*/
for (int i = 0; i < dp.length; i++) {
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
}
int res = 0;
for (int i = 0; i < dp.length; i++) {
res = Math.max(res, dp[i]);
}
return res;
}
}
如图
1 ,5,3,4,8
f(1)最长子序列为1
f(2)最长子序列为2
f(3)最长子序列为2
f(4)最长子序列为3
f(5)最长子序列为4
这个时候最大的子序列一定是4嘛?
不一定,假如把8改为5
1 ,5,3,4,0
这时候 f(5) = 1
所以dp = dp[i] =1