python爬取豆瓣评论,并制作成词云

一、爬取豆瓣热评

该程序进行爬取豆瓣热评,将爬取的评论(json文件)保存到与该python文件同一级目录下
注意需要下载这几个库:requests、lxml、json、time

import requests
from lxml import etree
import json
import time
class Spider(object):
    def __init__(self):
        #seif.ure='https://movie.douban.com/subject/23885074/reviews?start=0'
        self.headers={
            'User-Agent':'Mozilla/5.0(Windows NT6.1;Win64;x64)AppleWebKit/537.36(KHTML,like Gecko)Chrome/75.0.3700.100Safari/537.36'
        }
    def get_data(self,url):
        response = requests.get(url,headers=self.headers).content.decode('utf-8')
        page=etree.HTML(response)#xpath 对象
        #获取所有数据节点
        node_list = page.xpath('//div[@class="review-list  "]/div')
        for node in node_list:
            #作者
            author = node.xpath('.//header[@class="main-hd"]//a[2]/text()')[0]
            #评论
            text = node.xpath('string(.//div[@class="main-bd"]//div[@class="short-content"])')

            items={
                'author':author,
                'text':text.strip()
            }
            #持久化存储
            with open('yewen.json','a',encoding='utf-8') as f:
                f.write(json.dumps(items,ensure_ascii=False)+'\n')
    def run(self):
        for i in range(1,47):
            url='https://movie.douban.com/subject/26885074/reviews?start{}'.format(i*20)
            print('正在爬取第{}页'.format(i))
            self.get_data(url)
            time.sleep(3)
if __name__=='__main__':
    s=Spider()
    s.run()

二、制作词云

该程序将json中的数据进行处理,提取重要信息,并用wordcloud库制作词云图片,同样保存到与该python文件同一级目录下
注意需要下载这几个库:jieba、wordcloud、json

import jieba
from wordcloud import WordCloud
import json
f= open("yewen.json", "r", encoding="utf-8")
data_list= f.readlines()
str =''
for data in data_list:
    text= json.loads(data)['text']
    str +=text
#替换无关紧要的词语
result_str = str.replace('展开', '').replace('这篇','').replace('影评','').replace('电影','').replace('这部', '').replace('可能', '').replace('剧情','')
cut_text = jieba.lcut(result_str)
result = " ".join(cut_text)
wc = WordCloud(font_path='simhei.ttf',
               background_color="white",
               max_words=600,
               width=1000,
               height=1000,
               min_font_size=20,
               max_font_size=100,)
    #mast=plt.imreda('snake.jpg')#背景图片
wc.generate(result)#转化为词云的操作
wc.to_file("text.jpg")#保存
f.close()

在这里插入图片描述

以下是一个使用Python爬取豆瓣最新评论生成图的示例代码: ```python import requests from bs4 import BeautifulSoup import jieba from wordcloud import WordCloud import matplotlib.pyplot as plt # 爬取豆瓣评论的函数 def get_comments(url): headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'} response = requests.get(url, headers=headers) soup = BeautifulSoup(response.text, 'html.parser') comments = soup.find_all('span', class_='short') return [comment.get_text() for comment in comments] # 生成的函数 def generate_wordcloud(text): wordcloud = WordCloud(font_path='simhei.ttf', background_color='white', width=800, height=600).generate(text) plt.imshow(wordcloud, interpolation='bilinear') plt.axis('off') plt.show() # 主函数 def main(): url = 'https://movie.douban.com/subject/1292052/comments?status=P' # 替换为你要爬取豆瓣电影页面URL comments = get_comments(url) text = ' '.join(comments) text = ' '.join(jieba.cut(text)) generate_wordcloud(text) if __name__ == '__main__': main() ``` 这段代码的主要功能如下: 1. 使用requests库爬取豆瓣评论页面。 2. 使用BeautifulSoup解析HTML内容,提取评论文本。 3. 使用jieba库对文本进行分。 4. 使用wordcloud库生成图。 5. 使用matplotlib库显示生成图。 使用这段代码时,请注意以下几点: 1. 确保安装了所需的Python库:requests, bs4, jieba, wordcloud, matplotlib。 2. 将font_path参数设置为本地中文字体文件路径,以确保中文能正确显示。 3. 修改url变量为你想要爬取豆瓣电影页面URL。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大学生编程地

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值