1. 二叉树的最大深度
给定一个二叉树,找出其最大深度。二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。说明: 叶子节点是指没有子节点的节点。
方法一:深度优先搜索
先递归的计算左子树和右子树的最大深度,然后在O(1)时间内计算出当前二叉树的最大深度。递归在访问到空节点时退出。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int maxDepth(TreeNode* root) {
if(root==nullptr){
return 0;
}
return max(maxDepth(root->left), maxDepth(root->right))+1;
}
};
时间复杂度:O(n),其中n为二叉树节点的个数。每个节点在递归中只被遍历一次。
空间复杂度:O(height),其中height表示二叉树的高度。递归函数需要栈空间,而占空间取决于递归的深度,因此空间复杂度等价于二叉树的高度。
方法二:广度优先搜索
计算二叉树的层数即为计算二叉树的最大深度,使用层次遍历,在遍历完一层的节点时,层数加1;使用队列进行辅助计算,队列用来存放当前层的所有节点,当节点的左右子树不为空时,出队列,并且存储该节点的左右子树。使用一个变量ans来维护拓展的次数,该二叉树的最大深度即为ans.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int maxDepth(TreeNode* root) {
if(root==nullptr){
return 0;
}
queue<TreeNode*> Q;
Q.push(root);
int ans=0;
while(!Q.empty()){
int sz=Q.size();
while(sz>0){
TreeNode* node=Q.front();
Q.pop();
if(node->left){
Q.push(node->left);
}
if(node->right){
Q.push(node->right);
}
sz-=1;
}
ans+=1;
}
return ans;
}
};
时间复杂度:O(n),其中n为二叉树的节点数,每个节点只会被访问一次;
空间复杂度:取决于队列存储的元素数量,即二叉树的最大的宽度,最坏不会超过n,所以空间复杂度为O(n);
给你一个整数数组 nums ,其中元素已经按升序排列,请你将其转换为一棵高度平衡二叉搜索树。高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。
输入:nums = [-10,-3,0,5,9]
输出:[0,-3,9,-10,null,5]
解释:[0,-10,5,null,-3,null,9] 也将被视为正确答案
方法:中序遍历,总是选择根节点左边的节点作为根节点。
分析:二叉搜索树的中序遍历是升序序列,题目给定的是按照升序排列的有序数组,因此可以确保数组是二叉搜索树的中序遍历序列。给定中序遍历的序列不可以唯一的确定一棵树的结构,即使要求高度平衡,也是无法唯一确定一棵树的结构,所以解题结果不唯一。
我们可以选择中间元素作为二叉搜索树的根节点,这样分给左右子树的数字个数相同或者只相差1,可以使得树保持平衡。如果数组的长度是奇数,则根节点的选择是唯一的,如果长度是偶数,则可以中间位置的左边或者是右边数字作为根节点,选择不同的数字作为根节点则创建的平衡二叉搜索树也是不同的。
确定平衡二叉树的根节点之后,其余的数字分别位于平衡二叉搜索树的左子树和右子树中,左子树和右子树分别也是平衡二叉搜索树,因此可以通过递归的方式创建平衡二叉搜索树。
class Solution {
public:
TreeNode* sortedArrayToBST(vector<int>& nums) {
return helper(nums, 0, nums.size() - 1);
}
TreeNode* helper(vector<int>& nums, int left, int right) {
if (left > right) {
return nullptr;
}
// 总是选择中间位置左边的数字作为根节点
int mid = (left + right) / 2;
TreeNode* root = new TreeNode(nums[mid]);
root->left = helper(nums, left, mid - 1);
root->right = helper(nums, mid + 1, right);
return root;
}
};
时间复杂度:O(n),每个节点访问一次;
空间复杂度:O(logn),递归调用栈的大小;
3. 二叉树的最小深度
给定一个二叉树,找出其最小深度。最小深度是从根节点到最近叶子节点的最短路径上的节点数量。说明:叶子节点是指没有子节点的节点。
示例:
输入:root = [3,9,20,null,null,15,7] 输出:2
输入:root = [2,null,3,null,4,null,5,null,6] 输出:5
方法一:深度优先搜索
对于每一个非叶子节点,分别计算其左子树和右子树的最小叶节点深度。这样就将一个大问题转化为一个小问题,可以采用递归的方法。
class Solution {
public:
int minDepth(TreeNode *root) {
if (root == nullptr) {
return 0;
}
if (root->left == nullptr && root->right == nullptr) {
return 1;
}
int min_depth = INT_MAX;
if (root->left != nullptr) {
min_depth = min(minDepth(root->left), min_depth);
}
if (root->right != nullptr) {
min_depth = min(minDepth(root->right), min_depth);
}
return min_depth + 1;
}
};
时间复杂度:O(n),n是树的节点数,对每个节点访问一次;
空间复杂度:O(logn),logn为树的高度。主要取决于递归时栈空间的开销。
方法二:广度优先搜索
当碰到第一个叶子节点时,直接返回这个叶子节点的深度,广度优先搜索的性质保证了最先搜索到的叶子节点的深度一定最小。需要注意的是,在每一层结束的时候,depth+1,为了解决这个问题,采用了pair<TreeNode*, int>,int来标记每一层的深度。
class Solution {
public:
int minDepth(TreeNode *root) {
if (root == nullptr) {
return 0;
}
queue<pair<TreeNode *, int> > que;
que.emplace(root, 1);
while (!que.empty()) {
TreeNode *node = que.front().first;
int depth = que.front().second;
que.pop();
if (node->left == nullptr && node->right == nullptr) {
return depth;
}
if (node->left != nullptr) {
que.emplace(node->left, depth + 1);
}
if (node->right != nullptr) {
que.emplace(node->right, depth + 1);
}
}
return 0;
}
};
时间复杂度:O(n),其中n是节点数,对每一个节点访问一次;
空间复杂度:O(n),主要取决于队列的开销,队列元素不会超过节点数;
4. 路径总和
给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。叶子节点 是指没有子节点的节点。
示例:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
输出:true
解释:等于目标和的根节点到叶节点路径如上图所示。
输入:root = [], targetSum = 0 输出:false 解释:由于树是空的,所以不存在根节点到叶子节点的路径。
方法一:广度优先搜索
首先我们可以想到使用广度优先搜索的方式,记录从根节点到当前节点的路径和,以防止重复计算。这样我们使用两个队列,分别存储将要遍历的节点,以及根节点到这些节点的路径和即可。
class Solution {
public:
bool hasPathSum(TreeNode* root, int targetSum) {
if(root==nullptr){
return false;
}
if(root->left==nullptr && root->right==nullptr){
if(root->val==targetSum){
return true;
}else{
return false;
}
}
return hasPathSum(root->left, targetSum-root->val)||hasPathSum(root->right, targetSum-root->val);
}
};
时间复杂度:O(N),其中 N 是树的节点数。对每个节点访问一次。
空间复杂度:O(N),其中 N是树的节点数。空间复杂度主要取决于队列的开销,队列中的元素个数不会超过树的节点数。
方法二:递归
假定从根节点到当前节点的值之和为 val,我们可以将这个大问题转化为一个小问题:是否存在从当前节点的子节点到叶子的路径,满足其路径和为 sum - val。
不难发现这满足递归的性质,若当前节点就是叶子节点,那么我们直接判断 sum 是否等于 val 即可(因为路径和已经确定,就是当前节点的值,我们只需要判断该路径和是否满足条件)。若当前节点不是叶子节点,我们只需要递归地询问它的子节点是否能满足条件即可。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool hasPathSum(TreeNode* root, int targetSum) {
if(root==nullptr){//空指针情况
return false;
}
queue<TreeNode*> Q;
queue<int> P;
Q.push(root);
P.push(root->val);
while(!Q.empty() && !P.empty()){
TreeNode* temp=Q.front();
int sum=P.front();
Q.pop();
P.pop();
if(temp->left==nullptr && temp->right==nullptr && sum==targetSum){
return true;
}
if(temp->left!=nullptr){
Q.push(temp->left);
P.push(sum+temp->left->val);
}
if(temp->right!=nullptr){
Q.push(temp->right);
P.push(sum+temp->right->val);
}
}
return false;
}
};
时间复杂度:O(N),其中 N 是树的节点数。对每个节点访问一次。
空间复杂度:O(H),其中 H是树的高度。空间复杂度主要取决于递归时栈空间的开销,最坏情况下,树呈现链状,空间复杂度为 O(N)。平均情况下树的高度与节点数的对数正相关,空间复杂度为O(logN)。
5. 二叉搜索树迭代器
实现一个二叉搜索树迭代器类BSTIterator ,表示一个按中序遍历二叉搜索树(BST)的迭代器:BSTIterator(TreeNode root) 初始化 BSTIterator 类的一个对象。BST 的根节点 root 会作为构造函数的一部分给出。指针应初始化为一个不存在于 BST 中的数字,且该数字小于 BST 中的任何元素。boolean hasNext() 如果向指针右侧遍历存在数字,则返回 true ;否则返回 false 。int next()将指针向右移动,然后返回指针处的数字。
注意,指针初始化为一个不存在于 BST 中的数字,所以对 next() 的首次调用将返回 BST 中的最小元素。你可以假设 next() 调用总是有效的,也就是说,当调用 next() 时,BST 的中序遍历中至少存在一个下一个数字。
方法一:扁平化
我们可以直接对二叉搜索树做一次完全的递归遍历,获取中序遍历的全部结果并保存在数组中。随后,我们利用得到的数组本身来实现迭代器。
class BSTIterator {
private:
void inorder(TreeNode* root, vector<int>& res) {
if (!root) {
return;
}
inorder(root->left, res);
res.push_back(root->val);
inorder(root->right, res);
}
vector<int> inorderTraversal(TreeNode* root) {
vector<int> res;
inorder(root, res);
return res;
}
vector<int> arr;
int idx;
public:
BSTIterator(TreeNode* root): idx(0), arr(inorderTraversal(root)) {}
int next() {
return arr[idx++];
}
bool hasNext() {
return (idx < arr.size());
}
};
时间复杂度:初始化需要 O(n)的时间,其中 n为树中节点的数量。随后每次调用只需要 O(1)O的时间。
空间复杂度:O(n),因为需要保存中序遍历的全部结果。
方法二:迭代
除了递归的方法外,我们还可以利用栈这一数据结构,通过迭代的方式对二叉树做中序遍历。此时,我们无需预先计算出中序遍历的全部结果,只需要实时维护当前栈的情况即可。
class BSTIterator {
private:
TreeNode* cur;
stack<TreeNode*> stk;
public:
BSTIterator(TreeNode* root): cur(root) {}
int next() {
while (cur != nullptr) {
stk.push(cur);
cur = cur->left;
}
cur = stk.top();
stk.pop();
int ret = cur->val;
cur = cur->right;
return ret;
}
bool hasNext() {
return cur != nullptr || !stk.empty();
}
};