[大模型]Milvus Lite安装


Milvus 是一款开源的向量数据库,它主要特点是高可用、高性能和易扩展,主要用于处理海量向量数据的实时召回。它基于诸如 FAISS、Annoy、HNSW 等向量搜索库构建,核心功能是解决稠密向量相似度检索的问题。Milvus 在向量检索库的基础上,提供了数据分区分片、数据持久化、增量数据摄取、标量向量混合查询、时间旅行等功能,并显著优化了向量检索的性能,能够满足各种向量检索场景的应用需求。

前提

  1. 可以使用主机自带python解释器进行安装
  2. 但是避免相互冲突,本文仍然使用单独的环境来运行该服务
  3. 虚拟环境软件使用Anaconda

相关链接

官方网站

https://milvus.io/docs/milvus_lite.md

中文网站

https://www.milvus-io.com/getstarted/milvus_lite

创建虚拟环境

首先创建虚机环境,启动虚拟服务

conda create -n milvus_lite python=3.11

切换环境

conda activate milvus_lite

安装Milvus

pip install milvus

image.png
持久化运行Milvus

milvus-server --data D:\Application\server\milvus_lite

如果是linux则可以使用

milvus-server --data home\server\milvus_lite

会发现目录中自动创建了若干文件夹
image.png
命令行输出**Welcome to use Milvus!**表示运行成功
image.png

连接Milvus

attu连接工具

attu官方开源地址

https://github.com/zilliztech/attu

下载地址

https://github.com/zilliztech/attu/releases
image.png

连接

image.png
image.png

### Milvus Lite 版本介绍 Milvus Lite 是一款轻量级的开源向量数据库,旨在简化用户的初次体验和小型项目的开发过程。此版本适合希望快速上手而不必担心复杂配置的新用户。自版本 2.4.2 起,`pymilvus` 包已经包含了 Milvus Lite 组件[^1]。 对于那些只需要处理不超过一百万条记录的应用场景而言,Milvus Lite 提供了一种便捷的方式来探索 Milvus 功能集的可能性。它特别适用于 AI 应用程序的早期原型设计阶段,在这个时期更关注的是功能验证而非最终产品的性能优化[^3]。 ### 安装方法 为了获得最新的 Milvus Lite 发布版,可以通过 Python 的包管理工具 `pip` 来完成安装: ```bash pip install -U pymilvus ``` 这条命令不仅会更新或安装 `pymilvus` 到最新稳定版本,还会自动拉取必要的依赖项以支持 Milvus Lite 的运行环境[^2]。 ### 使用指南 一旦成功安装了 `pymilvus` 和内置的 Milvus Lite 后,便可以开始创建连接实例并与之交互。下面是一个简单的例子展示如何初始化一个本地模式下的客户端对象,并执行基本的操作如插入数据点、建立索引以及查询最近邻节点等: ```python from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection # 连接到本地部署的 Milvus 实例,默认监听 localhost:19530 地址 connections.connect("default") fields = [ FieldSchema(name="id", dtype=DataType.INT64, is_primary=True), FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=8) ] schema = CollectionSchema(fields) collection_name = "example_collection" milvus_lite_colletion = Collection( name=collection_name, schema=schema ) data_points = [[i for i in range(10)], [[float(i)] * 8 for i in range(10)]] milvus_lite_colliction.insert(data_points) index_params = {"metric_type": "L2", "index_type": "IVF_FLAT", "params": {"nlist": 128}} milvus_lite_colliction.create_index(field_name="embedding", index_params=index_params) search_param = {"metric_type": "L2", "params": {"nprobe": 10}} results = milvus_lite_colliction.search([[0.] * 8], param=search_param, limit=3) print(results) ``` 这段代码展示了怎样定义集合结构、加载测试数据、设置索引参数并发起一次近似最近邻居搜索请求的过程[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柒杉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值