[大模型]配置文件-Langchain-Chatchat-V0.3 (1)

简述

针对Langchain-Chatchat-V0.3版本,对配置文件与模型使用说明,本文建议使用Ollama配合Chatchat使用。

Ollama安装方式查看以往教程。
[大模型]ollama本地部署自然语言大模型_ollama模型下载后存放位置-CSDN博客

本地配置

nvidia-smi

image.png

配置文件

model_settings.yaml

默认使用的模型

# 默认选用的 LLM 名称
DEFAULT_LLM_MODEL: llama3.1

# 默认选用的 Embedding 名称
DEFAULT_EMBEDDING_MODEL: mxbai-enbed-large

在支持Agent模型中添加你想要的新模型

# 支持的Agent模型
SUPPORT_AGENT_MODELS:
  - llama3.1
  - chatglm3

image.png
使用ollama的LLM模型于Embedding模型

使用Ollama配置

模型配置

修改llm_modelsembed_models配置,为自己想要使用的模型。

  - platform_name: ollama
    platform_type: ollama
    api_base_url: http://127.0.0.1:11434/v1
    api_key: EMPTY
    api_proxy: ''
    api_concurrencies: 5
    auto_detect_model: false
    llm_models:
      - llama3
    embed_models:
      - mxbai-embed-large

找到Ollama双击启动
image.png
任务栏如下提示表示启动成功。使用模型时,Ollama会自动运行该模型,无需单独启动模型。
image.png

使用Xinference配置

image.png
启动模型
image.png
image.png
为chatchat安装客户端模块

pip install xinference-client

image.png

模型配置

修改llm_modelsembed_models配置,为自己想要的

  - platform_name: xinference
    platform_type: xinference
    api_base_url: http://127.0.0.1:9997/v1
    api_key: EMPTY
    api_proxy: ''
    api_concurrencies: 5
    auto_detect_model: true
    llm_models:
      - chatglm3
    embed_models:
      - bge-large-zh-v1.5
    text2image_models: []
    image2text_models: []
    rerank_models: []
    speech2text_models: []
    text2speech_models: []
修改默认使用的模型
# 默认选用的 LLM 名称
DEFAULT_LLM_MODEL: chatglm3

# 默认选用的 Embedding 名称
DEFAULT_EMBEDDING_MODEL: bge-large-zh-v1.5

image.png

对话

基础对话

配置好LLM模型,即可使用基础的对话。
image.png

知识库对话

创建知识库
image.png
选择文件,并点击添加文件到知识库
image.png
之后就可看到,知识库中已经拥有了这一段记忆。
image.png
最后,我们询问可以访问知识库的模型,可以得到如下结果
image.png

### 解决 LangChain Chatchat 0.3 版本中的 500 内部服务器错误 当遇到 LangChain Chatchat 0.3 版本的 500 内部服务器错误时,可能的原因有很多,包括但不限于配置文件不正确、依赖库版本冲突以及服务端资源不足等问题。以下是详细的排查和解决方案。 #### 配置检查 确保 `chatchat-config` 文件设置无误,特别是关于 embedding 模型的部分。如果使用自定义嵌入模型,则需确认该模型已成功加载并正常工作。命令如下所示: ```bash chatchat-kb -r --embed-model=custom-embedding-bge chatchat-config basic --show ``` 此操作有助于验证当前使用的配置是否符合预期[^1]。 #### 日志分析 对于任何类型的 Web 应用程序来说,日志都是解决问题的关键工具之一。通过查看应用程序的日志记录,可以更清楚地了解发生的具体情况。通常可以在项目根目录下的 logs 文件夹中找到这些信息;也可以尝试增加调试级别来获取更多细节。 #### 环境一致性校验 为了排除由于不同操作系统或软件包差异引起的问题,在 WSL 上构建 Linux 子系统的做法值得推荐。这不仅能够提供一个稳定的开发测试平台,而且还能有效减少跨平台带来的不确定性因素。具体步骤涉及更新系统包列表、安装 Python 的 pip 工具等基础准备工作[^2]。 #### 虚拟环境管理 创建独立于全局解释器之外的新 Conda 或者 venv 环境可以帮助隔离各个项目的依赖关系,从而降低潜在的风险。例如,可以通过下面这条指令快速建立一个新的 Python 3.10 运行时环境,并将其激活用于后续的操作: ```bash conda create -n llm_env python=3.10 && conda activate llm_env ``` 之后再执行必要的包安装流程即可。 #### 更新与重试 最后但同样重要的是保持所有组件处于最新状态。定期检查官方文档和技术社区是否有针对特定问题发布的补丁或是改进措施,并及时应用到本地环境中去。有时候简单的重启服务也可能意外地修复某些临时性的故障现象。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柒杉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值