吴恩达机器学习笔记(二)

目录

多维特征

向量化

用于多元线性回归的梯度下降法

特征缩放

平均归一化(mean normalization)

 标准差归一化(Z-score normalization)

判断梯度下降是否收敛

如何设置学习率

特征工程

多项式回归


多维特征

跟之前相比我们不再只是两个特征,而是多个特征来进行影响。

x_{j} = j^{th}特征

n = 特征数量

\vec{x}^{(i)} = 第i个训练特征

原先的模型:f_{w,b}(x) = wx + b

多个特征后:f_{w,b}(x) = w_{1}x_{1} + w_{2}x_{2}+\cdots +w_{n}x_{n} + b

向量化

向量化的含义:

参数和特征:

\vec{w} = [w_{1}\; w_{2}\; w_{3}]

\vec{x} = [x_{1}\; x_{2}\; x_{3}]

没有矢量化:

f_{\vec{w},b}(\vec{x}) = \sum_{j=1}^{n}w_{j}x_{j} + b

f = 0
for j in range(0,n):
    f = f + w[j] * x[j]
f = f + b

矢量化:

f_{\vec{w},b}(\vec{x}) = \vec{w}\cdot \vec{x} + b

f = np.dot(w,x) + b

用于多元线性回归的梯度下降法

先前的符号现在的符号
参数w_{1},\cdots ,w_{n},b\vec{w} = [w_{1}\; \cdots \; w_{n}]\; b
模型f_{\vec{w},b}(\vec{x}) = w_{1}x_{1}+\cdots +w_{n}x_{n}+bf_{\vec{w},b}(\vec{x})=\vec{w}\cdot \vec{x}+b
代价函数J(w_{1},\cdots ,w_{n},b)J(\vec{w},b)
梯度下降

w_{j}=w_{j}-\alpha \frac{\partial }{\partial w_{j}}J(w_{1},\cdots ,w_{n},b)

b = b-\alpha \frac{\partial }{\partial b}J(w_{1},\cdots ,w_{n},b)

w_{j}=w_{j}-\alpha \frac{\partial }{\partial w_{j}}J(\vec{w},b)

b=b-\alpha \frac{\partial }{\partial b}J(\vec{w},b)

用于多元线性回归的梯度下降法

w=w-\alpha \tfrac{1}{m}\sum_{i=1}^{m}(f_{w,b}(x^{(i)})-y^{(i)})x^{(i)}

b=b-\tfrac{1}{m}\sum_{i=1}^{m}(f_{w,b}(x^{(i)})-y^{(i)})

w_{1}=w_{1}-\alpha \tfrac{1}{m}\sum_{i=1}^{m}(f_{w,b}(x^{(i)})-y^{(i)})x_{1}^{(i)}

           \vdots

w_{n}=w_{n}-\alpha \tfrac{1}{m}\sum_{i=1}^{m}(f_{w,b}(x^{(i)})-y^{(i)})x_{n}^{(i)}

b=b-\tfrac{1}{m}\sum_{i=1}^{m}(f_{w,b}(x^{(i)})-y^{(i)})

特征缩放

示例说明:

s

平均归一化(mean normalization)

x=\tfrac{x-\mu }{max-min}   μ是指x的平均值

 标准差归一化(Z-score normalization)

x=\tfrac{x-\mu }{\sigma }   μ是指x的平均值,\sigma是指x的方差

 

 

 

判断梯度下降是否收敛

x轴是梯度下降算法的迭代次数,y轴是成本函数J的值;梯度下降算法目的假设找到一组w和b,让成本函数J最小;学习曲线可以帮助我们查看成本函数J如何变化,当算法正常运行时,成本函数J在每次迭代后都会减少,当其在一次迭代后增加了,那就说明学习率α选的有点大,或者代码有问题;当学习曲线平坦时,梯度下降算法收敛。

如何设置学习率

学习率的选择一般是先大后小,先大可以让成本函数尽快的往成本小的方向下降,等快到了底部,学习率就要慢慢的减小,防止跳出底部。所以最好是选择先比较大,然后慢慢缩减变小。

特征工程

Feature engineering: Using intuition to design new features,by transforming or combining original features.

特征工程:通过转换或组合原始特征,利用知识或直觉设计新特征。通常通过变换或组合原始特征问题以使学习算法更容易,做出准确的预测。

多项式回归

以多元线性回归和特征工程的思想来想出一种称为多项式回归的新算法。

我们在使用线性回归的时候总是假设数据背后是存在线性关系的,实际中这种情况还是比较少的,较多的还是非线性关系,多项式回归法正是解决数据之间非线性关系进行预测的机器学习算法,本质还是线性回归,只是增加了样本的特征

多项式回归:相当于为样本添加了一些特征,这些特征是原来样本的多项式项,增加了这些特征之后,我们可以使用线性回归的思路更好的拟合我们的数据。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值