Networkx的基本用法

Networkx基本用法

1.网络的初始化

1.1 四种基本网络模型的创建

规则网络

import networkx as nx
import matplotlib.pyplot as plt

def CreateRGGraph(k,N):
    RG=nx.random_graphs.random_regular_graph(k,N)
    pos=nx.spectral_layout(RG)     #图形样式:根据图的拉普拉斯特征向量排列节点的
    plt.subplot(111)
    nx.draw(RG,pos,with_labels=False,node_size=10)
    plt.show()
    return RG

CreateRGGraph(8,100)

规则网络

<networkx.classes.graph.Graph at 0x18b95634548>

ER随机网络

import networkx as nx
import matplotlib.pyplot as plt

def CreateERGraph(N,p):
    ER = nx.random_graphs.erdos_renyi_graph(N, p)
    pos = nx.shell_layout(ER)  #图形样式:这里是节点在同心圆上分布
    plt.subplot(111)
    nx.draw(ER, pos, with_labels=False, node_size=10)
    plt.show()
    return ER

ER=CreateERGraph(100,0.1)

随机网络

WS小世界网路

import networkx as nx
import matplotlib.pyplot as plt

def CreateWSGraph(N,k,p):
    WS = nx.random_graphs.watts_strogatz_graph(N, k, p)
    pos = nx.circular_layout(WS)  # 图形样式:这里是节点在一个圆环上均匀分布
    plt.subplot(111)
    nx.draw(WS, pos, with_labels=False, node_size=10)
    plt.show()
    return WS

WS=CreateWSGraph(100,8,0.4)

小世界网络

BA无标度网络

import networkx as nx
import matplotlib.pyplot as plt

def CreateBAGraph(N,m):
    BA = nx.random_graphs.barabasi_albert_graph(N, m)
    pos = nx.spring_layout(BA)  # 图形的样式:这里是中心放射状
    plt.subplot(111)
    nx.draw(BA, pos, with_labels=False, node_size=10)
    plt.show()
    return BA

BA=CreateBAGraph(100,1)

无标度网络

1.2 网络图的绘制

参考链接:https://blog.csdn.net/shanshanhi/article/details/55192884
各个布局的源代码:
https://blog.csdn.net/ztf312/article/details/50834463

netwokx绘图参数

参数用法
node_size指定节点的尺寸大小
node_color指定节点的颜色
node_shape节点形状(默认为圆形,用’o’表示)
alpha透明度(默认为1.0)
width边的宽度(默认为1.0)
edge_color边的颜色
style边的样式
with_labels节点是否带标签
font_size节点标签字体大小
font_color节点标签字体颜色

布局方式

  • circular_layout:节点在一个圆环上均匀分布
  • random_layout:节点随机分布
  • shell_layout:节点在同心圆上分布
  • spring_layout:用Fruchterman-Reingold算法排列节点
  • spectral_layout:根据图的拉普拉斯特征向量排列节

2. 基本操作

2.1 网络的存储与读取

邻接矩阵存储

import numpy as np
import networkx as nx

def SaveGraph(G,type):
    matrix=nx.to_numpy_matrix(G)
    np.savetxt("%s.txt"%type,matrix,fmt="%d",delimiter="    ")
#fmt为指定保存的文件格式,delimiter表示分隔符

网络的读取

def loadGraph():
    matrix=np.loadtxt("G.txt")
    G=nx.Graph()
    for i in range(len(matrix)):
        for j in range(len(matrix)):
            if matrix[i][j]==1:       #针对无权图
                G.add_edge(i,j)
    return G

2.2 节点、边的增删改查

参考链接:https://blog.csdn.net/qq_34107425/article/details/104085551

添加节点

import networkx as nx
import matplotlib.pyplot as plt

G=nx.Graph()
G.add_node('a')
G.add_nodes_from(['b','c','d','e'])
nx.draw(G,with_labels=True)
plt.show()

访问节点

print("图中节点:",G.nodes())
print("节点数目:",G.number_of_nodes())
图中节点: ['a', 'b', 'c', 'd', 'e']
节点数目: 5

删除节点

G.remove_node('a')
G.remove_nodes_from(['c','d'])
nx.draw(G,with_labels=True)
plt.show()

添加边

G=nx.Graph()
G.add_nodes_from(['a','b','c','d','e'])
G.add_edge('a','b')
G.add_edges_from([('a','c'),('b','d')])
nx.draw(G,with_labels=True)
plt.show()

访问边

print("图中所有的边:",G.edges())
print("图中的边数:",G.number_of_edges())
图中所有的边: [('a', 'b'), ('a', 'c'), ('b', 'd')]
图中的边数: 3

遍历边

#有权重的边遍历
for u,v,d in G.edges(data='weight'):
    print((u,v,d))
('a', 'b', None)
('a', 'c', None)
('b', 'd', None)
#无权重的边的遍历
for n, nbrs in G.adjacency():
    for nbr, eattr in nbrs.items():
        print('({},{})'.format(n,nbr))
(a,b)
(a,c)
(b,a)
(b,d)
(c,a)
(d,b)

3. 网络的参数

参考链接:https://blog.csdn.net/weixin_29157361/article/details/112804517

import networkx as nx
import matplotlib.pyplot as plt

def CreateERGraph(N,p):
    ER = nx.random_graphs.erdos_renyi_graph(N, p)
    pos = nx.shell_layout(ER)  
    plt.subplot(111)
    nx.draw(ER, pos, with_labels=False, node_size=10)
    plt.show()
    return ER

ER=CreateERGraph(100,0.1)

网络度值

  1. nx.degree()返回值为列表,列表中存储由节点序号和度值构成的元组
degrees=nx.degree(ER)
DegreeView({0: 10, 1: 7, 2: 8, 3: 12, 4: 6, 5: 9, 6: 9, 7: 9, 8: 7, 9: 10, 10: 6, 11: 11, 12: 15, 13: 12, 14: 9, 15: 11, 16: 8, 17: 10, 18: 11, 19: 8, 20: 11, 21: 12, 22: 13, 23: 7, 24: 12, 25: 8, 26: 11, 27: 13, 28: 9, 29: 9, 30: 13, 31: 10, 32: 7, 33: 12, 34: 12, 35: 10, 36: 6, 37: 8, 38: 10, 39: 12, 40: 11, 41: 11, 42: 4, 43: 7, 44: 17, 45: 7, 46: 11, 47: 10, 48: 6, 49: 15, 50: 13, 51: 15, 52: 10, 53: 13, 54: 8, 55: 6, 56: 9, 57: 12, 58: 18, 59: 11, 60: 12, 61: 6, 62: 11, 63: 9, 64: 11, 65: 18, 66: 5, 67: 11, 68: 15, 69: 8, 70: 11, 71: 11, 72: 7, 73: 13, 74: 10, 75: 9, 76: 9, 77: 5, 78: 6, 79: 11, 80: 16, 81: 8, 82: 9, 83: 11, 84: 10, 85: 7, 86: 4, 87: 13, 88: 14, 89: 8, 90: 8, 91: 8, 92: 9, 93: 10, 94: 15, 95: 12, 96: 8, 97: 6, 98: 8, 99: 13})
  1. nx.degree_histogram()返回度值的列表
degree=nx.degree_histogram(ER)
[0, 0, 0, 0, 2, 2, 8, 8, 13, 12, 11, 16, 10, 8, 1, 5, 1, 1, 2]

聚集系数

  1. nx.clustering()以字典的形式返回各节点的聚集系数
clustering=nx.clustering(ER)
  1. 平均聚类系数
nx.average_clustering(ER)
0.08843764895235477

其他

  1. 节点度中心系数:通过节点的度表示节点在图中的重要性
degree_centrality=nx.degree_centrality(ER)
  1. 节点距离中心系数:通过距离来表示节点在图中的重要性
closeness_centrality=nx.closeness_centrality(ER)
  1. 节点介数中心系数
betweenness_centrality=nx.betweenness_centrality(ER)
  1. 网络直径
d=nx.diameter(ER)
  1. 网络平均最短路径
r=nx.average_shortest_path_length(ER)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值