最小化一维曼哈顿距离的简单证明

本文探讨了在数轴上n个点的情况下,如何通过选择一个点,使得所有点移动到该点的曼哈顿距离之和最小。证明了在中点处取值时,距离之和达到最小。
摘要由CSDN通过智能技术生成

最小化一维曼哈顿距离的简单证明

对于在数轴上的 n n n 个点,要集合所有点于同一位置,使得移动的曼哈顿距离之和最小,那么应该选取哪个点呢?

设有 n n n 个点, i i i 点的位置为 x i x_i xi ,且有 x i ≤ x i + 1   (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值