【李宏毅机器学习】-- 基本概念

主要记录李宏毅机器学习的一些笔记,视频链接:李宏毅2021/2022春机器学习课程

1. 机器学习

1.1 基本概念

image-20230221091008223

机器学习就是具备找一个函数的能力

回归:函数输出值为数值

分类:给你一个选项,函数输出正确的选型

image-20230221091121519

1.2 机器学习训练的过程

1.写出一个带有未知参数的函数

image-20230221091744303

2.定义Loss

image-20230221092128407

损失函数是一个基于参数的函数,例如L(b,w)

假设b=0.5k,w=1,将其带入预测函数,然后用训练数据计算预测出来的结果,计算预测的结果与真实的结果。

image-20230221092230690

Loss就是真实结果与预测结果差值之和

image-20230221092345017

3.优化

梯度下降:(找到一个w使得loss值最小)

  • 随机初始化一个值 w 0 w_0 w0

  • 计算微分值(切线斜率)

    • 结果为正值:减小w
    • 结果为负值:增大w
    • 减小与增大w的多少是由增长率决定的
  • 重复以上过程

梯度下降会找到局部最小值,但不一定是全局最小

image-20230221094022140 image-20230221094116595 image-20230221094211174

1.3 模型的改进

image-20230221095618664

可以看出,红色的线段可以由常数项+蓝色线段组成的

image-20230221095706477

对于不同的曲线,可以在曲线上取不同的点,然后使得线段逼近曲线

image-20230221095903948

量化蓝色曲线:

image-20230221100132300

调整b、w、c可以获得不同的sigmoid函数

image-20230221100223203

计算上述红色曲线的函数,此时是单个特征:

image-20230221100439216

有更多的特征时,下图有3个特征 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3

image-20230221100810111 image-20230221100918359 image-20230221101038927

参数的定义:

image-20230221101223084

计算loss:

image-20230221101509906

优化:

image-20230221101658087

在实际操作中:

将样本随机分为几个batch,第一个batch计算L1,然后更新参数,再计算L2,继续更新参数

image-20230221102849523 image-20230221103131834

模型的选择:(激活函数)

image-20230221103354147 image-20230221103428194

2. 深度学习

image-20230221103822780

2.1 反向传播

链式法则:

image-20230222085408420 image-20230222085755469 image-20230222085821451
2.1.1前向传播
image-20230222090016650 image-20230222090042882
2.1.2 反向传播
image-20230222090642496

假设已知 ∂ C ∂ z ′ \frac{\partial C}{\partial z'} zC ∂ C ∂ z ′ ′ \frac{\partial C}{\partial z''} z′′C,将其作为输入可得:

image-20230222091436037

计算 ∂ C ∂ z ′ \frac{\partial C}{\partial z'} zC ∂ C ∂ z ′ ′ \frac{\partial C}{\partial z''} z′′C

1.有输出层的情况

image-20230222091536522

2.没有到输出层

继续往下走,直到找到输出层

image-20230222091732134

换个方向计算,即从输出层 y 1 , y 2 y_1,y_2 y1,y2算到输入层

image-20230222091935198

总结:

前向传播vs反向传播

image-20230222092026570

3. 回归

回归的应用:

image-20230222092654986

3.1 线性回归

1.定义线性模型

image-20230222093059632

2.评价模型的好坏

定义损失函数(真正的数值 - 预测的值)用两者之间的差来衡量函数的好坏

image-20230222093540294 image-20230222093639192

3.优化函数

image-20230222093815587

利用梯度下降计算:(具体流程和上面所写的相同)

image-20230222094301277

对于线性回归,它的损失函数是凸函数,即没有局部最优

模型的结果:

image-20230222095116538

选择更复杂的模型:

image-20230222095539298

在训练数据上,选择更复杂的模型会有更小的误差

image-20230222095629226

但是在测试数据上不会一直有更好的表现,这就是过拟合,需要选择一个最适合的模型

3.2 优化模型

考虑有隐藏的因素:

image-20230222102039650 image-20230222102110493 image-20230222102223173

但是注意,如果把所有考虑的特征都加进去,可能会造成过拟合,可以进一步使用正则化

image-20230222102324952

正则化优化:使得模型更加平滑

image-20230222101120705 image-20230222101247039

λ \lambda λ越大,模型就越平滑,考虑训练数据的误差就越少,与之对应,训练数据的误差就会变大,但测试数据上的误差反而会减小,因此需要选择合适的 λ \lambda λ

4. 分类

分类的应用:

image-20230222102749953

具体分类做法

image-20230222103745192

把分类当作回归来看:

  • 训练时可以把一个样本定义为1,第2个样本定义为-1
  • 测试时:越接近于1,则为1;越接近于-1,则为样本2
image-20230222104224367

利用上述算法进行处理会出现问题,会惩罚那些太正确的样本,如右图,利用回归算法,为了减少误差会得到紫色的那条线,但是实际分类确实绿色的线,运用该算法会出现一些问题

4.1 分类算法

算法的流程:

image-20230222104450452

4.2 生成模型

假设有两个类别 C 1 , C 2 C_1,C_2 C1,C2 P ( C 1 ∣ x ) = P ( x ∣ C 1 ) P ( C 1 ) P ( x ∣ C 1 ) P ( C 1 ) + P ( x ∣ C 2 ) P ( C 2 ) P(C_1|x) = \frac{P(x|C_1)P(C_1)}{P(x|C_1)P(C_1) + P(x|C_2)P(C_2)} P(C1x)=P(xC1)P(C1)+P(xC2)P(C2)P(xC1)P(C1),其中 P ( C 1 ) 、 P ( C 2 ) P(C_1)、P(C_2) P(C1)P(C2)为先验分布, P ( x ∣ C 1 ) 、 P ( x ∣ C 2 ) P(x|C_1)、P(x|C_2) P(xC1)P(xC2)都是高斯分布

image-20230222104934071

高斯分布:(正态分布)

image-20230222105538370

假设样本服从高斯分布,根据已有的标签数据可以求得每一类均值和方差的估计:

image-20230222105622466

极大似然估计:

image-20230222105905037

可以求出均值 μ ∗ \mu^* μ和方差 Σ ∗ \Sigma^* Σ的估计:

image-20230222110139512

计算出均值和方差:

image-20230222110247302

计算分类:

image-20230222110358258

总结

image-20230222112010822

4.3 后验概率公式推导

image-20230222112446507 image-20230222112622163 image-20230222112712923 image-20230222112757589 image-20230222113047866

即现在模型可以简化为只需要估计w和b

4.4 逻辑回归

1.算法模型:

image-20230222140038101 image-20230222140138302

2.评价算法的好坏

交叉熵损失函数

f w , b ( x ) = σ ( w x + b ) f_w,b(x) = \sigma(wx+b) fw,b(x)=σ(wx+b),则逻辑回归的损失函数为L(w,b):

image-20230222140438406 image-20230222140801527 image-20230222140854983

H(p,q)即为交叉熵损失函数

3.优化函数

image-20230222141225559 image-20230222141303794 image-20230222141435104

逻辑回归vs线性回归

image-20230222141503612

逻辑回归运用均方误差:

image-20230222142354699

进行梯度下降的时候,后面计算微分的时候,在距离目标很近以及距离目标很远的时候都会出现微分为0的情况,具体图像如下所示:

image-20230222142647453

逻辑回归的限制:

image-20230222144608482 image-20230222144656818

逻辑回归的边界就是一条直线,对于上述的图形会发现逻辑回归无法划分出红色的点和蓝色的点

解决方法是:将特征转换

image-20230222144834652

但是并不能一直可以找到一个好的转换,所以需要新的解决方法

将逻辑回归模型级联起来:

前面所做的就是将特征转换,而后面的才是进行分类

image-20230222145042960

4.5 判别模型 vs 生成模型

image-20230222142900601

一般情况下,两者的w和b不一定相同

生成式模型的优点:

  • 因为生成模型有一个先验的假设,所以需要更少的训练数据,而且对噪声有更高的鲁棒性。
  • 先验分布和类别依赖的概率分布可以从不同的来源估计。

4.6 多分类

image-20230222144357187 image-20230222144311715
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值