【更新中】李宏毅机器学习学习笔记汇总

  • 之前粗略地学过一次,准备这个暑假再详细地学一次,做做笔记,这篇博客作为一个汇总。
  • 课程链接: https://www.bilibili.com/video/BV1JE411g7XF
  • 由于我的笔记在本地是用OneNote写的,好像无法导出为markdown ,所以第一节博客内容都是从OneNote上以图片形式放上来的。
  • 本强迫症思来想去觉得这样太麻烦了,明天还是用markdown写吧QAQ
  • 我吐了,第二节是用typora在本地写的,typora的图片只可以在本地看,我也懒得重新搞我GitHub的图床了,第三节还是直接在csdn上写吧(强行把csdn当图床使…但愿不会再出什么幺蛾子)大佬们要是有好的方法,欢迎评论
  • 在评论区看到一个大佬的笔记总结,写的很棒,链接

1、课程简介

2、Regression

regress case study 回归案例研究p3(2020.7.15)

regress case study 回归案例研究p3(2020.7.15)

Basic Concept 基础概念p4 (2020.7.16)

Basic Concept 基础概念p4 (2020.7.16)

Gradient Descent_1 梯度下降(p5、p6、p7 )(2020.7.16)

Gradient Descent_1 梯度下降(p5、p6、p7 )(2020.7.16)

[选学,之后补p8]

[选学,之后补p9]

Classification_1 分类(p10)(2020.7.17)

Classification_1 分类(p10)(2020.7.17)

Logistic Regression 逻辑回归(p11)(2020.7.18)

Logistic Regression 逻辑回归(p11)(2020.7.18) 引入Deep Learning

3、Deep Learning

Brief Introduction of Deep Learning 深度学习简介(p12)(2020.7.19)

Brief Introduction of Deep Learning 深度学习简介(p12)(2020.7.19)

Why Deep Learning(p15) 学习笔记(2020.7.20)

Why Deep Learning(p15) 学习笔记(2020.7.20)

backpropagation 反向传播(p13) 学习笔记(2020.7.21)

backpropagation 反向传播(p13) 学习笔记(2020.7.21)

Convolutiona Neural Network 卷积神经网络(p17) 学习笔记(2020.7.22)

Convolutiona Neural Network 卷积神经网络(p17) 学习笔记(2020.7.22)

Tips for Deep Learning(p14) 学习笔记(2020.7.24)

Tips for Deep Learning(p14) 学习笔记(2020.7.24)

[p16讲解pytorch]

[选学,之后补p18]

[选学,之后补p19]

Recurrent Neural Network Part1 循环神经网络(p20) 学习笔记(2020.7.26)

Recurrent Neural Network Part1 循环神经网络(p20) 学习笔记(2020.7.26)

Recurrent Neural Network Part2 循环神经网络(p21) 学习笔记(2020.7.27)

Recurrent Neural Network Part2 循环神经网络(p21) 学习笔记(2020.7.27)

Unsupervised Learning - Word Embedding 无监督学习 - 词嵌入(p22) 学习笔记(2020.7.28)

Unsupervised Learning - Word Embedding 无监督学习 - 词嵌入(p22) 学习笔记(2020.7.28)

Transformer(p23) 学习笔记(2020.7.29)

Transformer(p23) 学习笔记(2020.7.29)

Semi-supervised Learning 半监督学习(p24) 学习笔记(2020.7.31)

Semi-supervised Learning 半监督学习(p24) 学习笔记(2020.7.31)

p25

p26

p27

p28

p29

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值