科学计数法是科学家用来表示很大或很小的数字的一种方便的方法,其满足正则表达式 [+-][1-9]
.
[0-9]+E[+-][0-9]+,即数字的整数部分只有 1 位,小数部分至少有 1 位,该数字及其指数部分的正负号即使对正数也必定明确给出。现以科学计数法的格式给出实数 A,请编写程序按普通数字表示法输出 A,并保证所有有效位都被保留。
分析:
考虑小数点向左移动和向右移动两种情况,那么需要记录小数部分位数weishu(借助eposition和dotposition相减再减1),标志位flag用于标记小数点向左向右移动情况,zhishu用于记录小数点移动位数,输出时分情况特判:
1、若向右移动小数点:
- a.小数位数大于移动次数,需要输出小数点,无需右边补0
- b.情况a的对立面,无需输出小数点,但是需要右边补0,个数为(zhishu-weishu)
2、向左移动小数点:因为整数部分只有一位且采用科学计数法,所以一定需要输出小数点,并且左边补0,个数为(dotposition-1)
代码:
#include<bits/stdc++.h>
#define MAX 10
using namespace std;
int main(int argc, char *argv[])
{
string a;
cin>>a;
vector<char> vec;
int dotposition=0,eposition=0,zhishu=0,flag=0,i;//flag=0左移动小数点 flag=1右移动小数点
for(i=0;i<a.length();i++)//存放除指数部分的信息到vec中
{
if(a[i]=='E')
{
eposition=i;//记录E出现的下标
continue;
}
if(a[i]=='+'&&i!=0)
{
flag=1;
i++;
break;
}
if(a[i]=='-'&&i!=0)//到底+-就break 不同的是+需要做个标记
{
i++;
break;
}
if(a[i]=='.')//记录小数点下标
dotposition=i;
vec.push_back(a[i]);
}
for(i;i<a.length();i++)
{
zhishu=zhishu*10+a[i]-'0';//计算指数值 即小数点需要移动的位数
}
int weishu=eposition-dotposition-1;//小数部分位数
if(flag)//右移小数点
{
if(weishu<=zhishu)//小数位数<小数点移动次数
{
vec.insert(vec.end(),zhishu-weishu,'0');//无需输出小数点
for(auto i:vec)
{
if(i=='.'||i=='+')//跳过小数点
continue;
cout<<i;
}
}
else//需要输出小数点
{
int nowdot=dotposition+zhishu;//现在的小数点位置
for(i=0;i<vec.size();i++)
{
if(a[i]=='+'||a[i]=='.')//跳过+和.
continue;
cout<<vec[i];
if(i==nowdot)
cout<<".";
}
}
}
else//左移小数点 整数部分只有一位
{
vec.insert(vec.begin()+1,zhishu,'0');
for(i=0;i<vec.size();i++)
{
if(i==2)
cout<<".";
if(vec[i]=='+'||vec[i]=='.')//跳过+和.
continue;
cout<<vec[i];
}
}
return 0;
}