2019D题数学建模 分析与阅读笔记2&3

该文探讨了如何通过时间对齐算法和分段线性插值法,校准自建点与国控点环境监测数据的差异。文章指出,数据差异的计算涉及时间缺失数据的处理和影响因素的关联度分析。使用多元线性回归模型分析了多个环境因素如浓度、风速等对差异值的影响。尽管校准后数据与国控点数据吻合度提高,但论文未详细说明缺失数据的处理方法。关联度分析和回归模型为理解数据差异提供了新视角。
摘要由CSDN通过智能技术生成

 

 那么可以将问题分解为两点:

1.如何定量计算出自建点数据和国控点数据的差异值?

此论文通过时间对齐算法实现国控点数据和监测点数据的可比较性。说实话,这篇论文采用的时间对齐算法,我之前还真的没有接触过。百度搜索了一下这个算法,其实我个人觉得,这个名称是题目自己取的,只是为了让时间一一对应罢了。先补全对于时间缺失的数据,而后再设定一个区间,以这个区间对数据进行分段,然后取这个区间的平均值。最后再将处理过后的2数据与1数据进行差值处理就是差异值,画出图像。

漏洞:它的这篇论文还有一个问题没有说明白,就是那些他原本想要对齐而实际上缺失的数据,论文中并没有说明是如何进行处理的。

2.差异值的影响因素分析,包括因素的识别、因素间相互关系以及因素影响程度大小等问题。
基于关联度分析的差异值影响模型
关联度分析:关联度分析方法是根据因素之间发展态势的相似或相异程度来衡量因素间关联的程度,它解释了事物动态关联的特征与程度。它具备不过分要求样本量、不需要典型分布规律、计算量少、不会出现关联度量化结果与定性分析不一致等优点,因此得到了广泛使用。

该论文着重考察各因素对差异值的影响,分析之间的关系。

关联度分析,我好像还不知道怎么搞,明天好好看看操作。

基于多元线性回归的差异值影响模型

多元回归分析的基本步骤如下:(1)获取自变量与因变量的数据,作为样本数据;(2)根据自变量与因变量基本确定回归模型;(3)利用自变量与因变量的样本数据拟合出回归数学模型的系数;(4)通过模型的显著程度、拟合度等参数评价模型优劣。文中,多元线性回归模型的因变量仍为自建点与国控点在“两尘四气”浓度上的数据差异值。自变量分别为“两尘四气”浓度、风速、气压、降水量、温度以及湿度,共计11维。

零点漂移和量程漂移恰可视作方程的常数项发生了变化。

小结:该题从关联度分析和多元回归分析两个角度,分别考察了导致自建点数据和国控点数据产生差异的因素,分析内容详实,具体包括是哪些影响因素导致了差异值的产生、测算出差异值与影响因素的关联度排序、各影响因素对于差异值的显著程度、作用方向及影响程度。
 

针对基于分段线性插值方法对自建点数据进行校准,将自建点数据校准问题,转化为一个过已知有限个数据点(国控点监测数据)求近似函数的问题。

已知国控点的监测数据准确,但布控较少、发布时间滞后;自建点监测数据更新快,但误差较大。如何利用国控点数据对自建点数据进行校准这一问题,等同于求一个过已知有限个数据点(国控点监测数据)的近似函数,进而产生出与自建点监测数据同步更新的数据,并据此对自建点数据进行校准。校准方法的有效性需要进行客观、准确的评价,可考虑通过可视化方式、定量计算两种方式进行评价。

分段线性插值:是将每两个相邻的节点用直线连起来,如此形成的一条折线就是分段线性插值函数。具体到每一个分段,指插值函数为一次多项式的插值方式,即线性插值(在插值节点上的插值误差为零)。


由图可知,国控点和自建点数据存在明显的不一致现象,但校准后的自建点数据与国控点数据吻合度较好。

 

2019年MathorCup高校数学建模挑战赛D 2019年第九届MathorCup高校数学建模挑战赛 竞赛信息 竞赛简介 为了培养学生的创新意识及运用数学方法和计算机技术解决实际问的能力,中国优选法统筹法与经济数学研究会决定主办2019年第九届MathorCup高校数学建模挑战赛,欢迎各高等院校按照竞赛章程及有关规定组织同学报名参赛。 组织机构 主办单位:中国优选法统筹法与经济数学研究会 【中国优选法统筹法与经济数学研究会是在中国科学技术协会直接领导下的学术性社会团体,是国家一级学会。学会由华罗庚教授于1981年发起成立,至今成立了评价方法与应用、项目管理、计算机模拟、统筹、管理决策与信息系统、工业工程、高等教育管理、数学教育、经济数学与管理数学、应急管理、灰色系统研究,复杂系统研究等十余个专业分会】 竞赛时间 报名时间:即日起至2019年 4 月 10日 12:00 竞赛时间:2019年4 月 11 日08:00至2019年 4 月 15 日08:00 参赛对象 普通高校全日制在校生(研究生、本科生、专科生)以队为单位参赛,每队不超过3人,不允许跨校组队参赛。 参赛费用 每支队伍需缴纳200元的报名费用。 奖项设置 参赛队伍:全国一等奖(约5%)、全国二等奖(约15%)、全国三等奖(约30%),从一等奖队伍中经过决赛答辩决出4支队伍获得“MathorCup”荣誉奖杯; 组织单位:优秀组织单位、优秀组织社团、优秀组织个人; 其它奖励政策:参见《 MathorCup高校数学建模挑战赛奖励细则》( 可从官方主页下载)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值