需求七:互相关注&可能认识的人
需求一:互相关注的人
- 用户好友关系是一个产品的核心数据,只允许互相关注的用户之间发消息称为强关系型产品,比如微信;反之,不互相关注也能看到动态,比如微博,就是弱关系型产品
- 因为微信的存在,现在基本能做大的都是社区型的,弱关系型的产品了。所以互联网公司就很容易碰到,从单向关注数据中计算是否双向关注这种需求。
- 假设现在有一张表,叫table_relation里面只有两个字段,from_user,to_user, 代表关注关系从from指向to,即from_user关注了to_user。
- 求互相关注
解决
- 方式一:自关联
- 缺点:当用户量到了亿级别,关注关系到了百亿级别,join起来的效率就会很低。
select
a.from_user,
a.to_user,
if(b.from_user is not null, 1, 0) as is_friend
from table_relation a
left join table_relation b
on a.from_user = b.to_user
and a.to_user = b.from_user
- 方式二:找特征相同
- 假设按照字典顺序做一次排序,那么排序后的结果都是(A, B), (A, B)
- 这样把特征相同的数据分到一组,计算组里面的数据条数,为1则是单向关注,为2则是双向关注。
- 这里
没有考虑数据重复
的情况,假设有两条(A,B)(A,B),那结果就错了,不过这种数据存在说明了数仓建设的失败。如果真有,那就先去重一次即可。 - 这里也
没有考虑用户id是非string数据类型
的情况,不过一般都能转成string。 - 最后,
不一定非要排序做字符串,能计算出共同特点就行
。比如用hash函数也没问题。
select
a.from_user,
a.to_user,
if( sum(1) over (partition by feature) > 1, 1, 0) as is_friend
from
(
select
a.from_user,
a.to_user,
if(from_user > to_user, concat(to_user, from_user), concat(from_user, to_user)) as feature
from table_relation
)a
需求二:可能认识的人
- 可能认识的人,主要是基于用户的好友关系计算。
- 假设有用户A,B,C其中AB是朋友,AC也是朋友,那么B和C很大可能也是认识的朋友。
- 这时候向B推荐C或者向C推荐B,他们互相加好友的概率相对就大一些。
- 假设朋友关系表的名字叫做table_friends,里面有两列user_1,user_2,含义是user_1向user_2提出了好友申请,并且申请通过。
- 思路
- 假设我们有了好友关系(A, B), (A, C),那么
- A、第一步先得到数组(B, C)
- B、然后展开数组得到 (B, (B, C)), (C, (B, C))
- C、然后再展开一次数组得到(B,B), (B,C), (C, B), (C, C)
- D、过滤掉相同的项(B,B),(C,C),剩下的就是我们需要的结果,并且统计出现的次数,就是共同好友的个数。这里给B推荐C,有一个共同好友;给C推荐B,有一个共同好友
- 假设我们有了好友关系(A, B), (A, C),那么
select
a.base_user,
a.possible_user,
sum(1) as common_friends_count -- 5、sum
from
(
select
comm_user,
base_user,
possible_user
from
(
select
comm_user,
collect_set(userid) as possible_user_set -- 2、collect_set
from
(
select
user_1 as comm_user,
user_2 as userid
from table_friends
union all -- 1、union_all
select
user_2 as comm_user,
user_1 as userid
from table_friends
)a
group by comm_user
)a
lateral view explode(possible_user_set) t1 as base_user -- 3、explode
lateral view explode(possible_user_set) t2 as possible_user
)a left join (
select
user_1,
user_2
from
(
select
user_1,
user_2
from table_friends
union all
select
user_2 as user_1,
user_1 as user_2
from table_friends
)a
group by user_1, user_2
)b on a.base_user = b.user_1 and a.possible_user = b.user_2
where a.base_user <> a.possible_user and b.user_1 is null -- 4、filter
group by base_user, possible_user
-
然后重点介绍几个关键的注释点:
-
1、union_all
- 好友关系申请表一般只会记录申请关系,即A向B申请了好友,那么表中只有一条(A, B),而不会存在(B, A)。而我们需要A的好友群,也需要B的好友群,所以这里复制了一份反向的申请关系。当然,如果好友关系表里面本来就是用两条记录来表示好友关系的,那就不需要做一次union all了
-
2、collect_set 聚合
- 这里把每个用户的好友们整理在一个集合中,存在possible_user_set里。换句话说就是,把有同一个共同好友的人,都放在一起,成一个Array
-
3、explode 展开
- 两次展开好友集合,相当于好友集合自身做了一次笛卡尔积。假设我有N个朋友,展开之后就是N^2条记录。这样就把他们之间所有可能的链接做了出来。
-
4、filter 过滤
- 在所有可能的链接中,我们需要去掉自己对自己的链接关系,以及已经是好友的链接关系
-
5、sum
- 根据base_user进行聚合求sum(1),就是共同好友的个数了。如果不放心,也可以用count(distinct comm_user)
-
优化点
- 第三步展开时,N^2带来的内存压力还是很大的。微信目前最多可以添加5000个好友,上限就是25000000,用户关系上涨两千五百万倍,随便哪个集群都吃不消。所以这里需要考虑只展开一次,膨胀5000倍还是可以考虑的。只展开一次时,数据的格式是(B, (B, C)),这就要求直接操作array,我们需要进行array_remove_element删除自身,还需要进行一次array_minus把已经是好友的元素剔除。这两个操作使用UDF可以轻松完成,这里不再展开。