对比学习simcse论文代码复现

from tqdm import tqdm
import torch.nn as nn
import numpy as np
from torch.utils.data import DataLoader,Dataset
import os
import json
import random
import torch
import pandas as pd
from  transformers import BertTokenizer,BertModel,BertConfig
from torch.nn.utils.rnn import  pad_sequence
import torch.nn.functional as F
from transformers.modeling_outputs import SequenceClassifierOutput
from sklearn.metrics import f1_score,accuracy_score,recall_score

class CFG:
    model_path = "D:\\Users\\stkj\\PycharmProjects\\pythonProject\\nlp\\self_text_classfication\\model_weight\\roberta_data"
    data_path = os.path.join("..","data","ants")
    test_data_path = os.path.join("..","data","ants","test.json")
    learn_rate = 1e-5
    epochs = 5
    max_len = 510
    batch_size = 32
    device = "cuda"
    print_step = 50
    save_path = os.path.join("..","model_weith","roberta.bin")
    throshold = 0.6
    data_save_path = os.path.join("..","data","ants","output.csv")


def seed_everything(seed=42):
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True


class SimcseDataSet(Dataset):
    def __init__(self,sentence_a,sentence_b,labels,tokenizer,mode="train"):
        self.sentence_a = sentence_a
        self.sentence_b = sentence_b
        self.labels = labels
        self.tokenizer = tokenizer
        self.pad_token = tokenizer.pad_token
        self.mode = mode
        self.pad_token_id = tokenizer.pad_token_id
        self.sentence = np.concatenate((sentence_a,sentence_b),axis=0)

    
    def __len__(self):
        if self.mode=="train":
            return len(self.sentence)
        assert len(self.sentence_b) == len(self.sentence_b) == len(self.labels), "数据长度不一样,玩个锤子!!!"
        return len(self.sentence_b)


    def __getitem__(self, index):
        if self.mode=="dev":
            sentence_a = self.sentence_a[index]
            sentence_b = self.sentence_b[index]
            input_a = self.tokenizer(sentence_a,truncation=True,max_length = CFG.max_len)
            input_b = self.tokenizer(sentence_b,truncation=True,max_length = CFG.max_len)
            return {
                "input_ids_a": torch.as_tensor(input_a["input_ids"],dtype=torch.long),
                "input_ids_b": torch.as_tensor(input_b["input_ids"],dtype=torch.long),
                "attention_mask_a": torch.as_tensor(input_a["attention_mask"],dtype=torch.long),
                "attention_mask_b": torch.as_tensor(input_b["attention_mask"],dtype=torch.long),
                "label": torch.as_tensor(int(self.labels[index]),dtype=torch.long)
            }
        senten = self.sentence[index]
        items = self.tokenizer(senten,truncation=True,max_length = CFG.max_len)
        return {
            "input_ids": torch.as_tensor(items["input_ids"]),
            "attention_mask": torch.as_tensor(items["attention_mask"])
        }


class TestDataSet(Dataset):
    def __init__(self, sentence_a, sentence_b, tokenizer):
        self.sentence_a = sentence_a
        self.sentence_b = sentence_b
        self.tokenizer = tokenizer
        self.pad_token = tokenizer.pad_token
        self.pad_token_id = tokenizer.pad_token_id

    def __len__(self):
        assert len(self.sentence_a) == len(self.sentence_b), "数据长度不一样,玩个锤子!!!"
        return len(self.sentence_b)

    def __getitem__(self, index):
        sentence_a = self.sentence_a[index]
        sentence_b = self.sentence_b[index]
        input_a = self.tokenizer(sentence_a, truncation=True, max_length=CFG.max_len)
        input_b = self.tokenizer(sentence_b, truncation=True, max_length=CFG.max_len)
        return {
            "input_ids_a": torch.as_tensor(input_a["input_ids"], dtype=torch.long),
            "input_ids_b": torch.as_tensor(input_b["input_ids"], dtype=torch.long),
            "attention_mask_a": torch.as_tensor(input_a["attention_mask"], dtype=torch.long),
            "attention_mask_b": torch.as_tensor(input_b["attention_mask"], dtype=torch.long),
        }

    def collate_test_fn(self,batch):
        input_ids_a = [item["input_ids_a"] for item in batch]
        input_ids_b = [item["input_ids_b"] for item in batch]
        attention_mask_a = [item["attention_mask_a"] for item in batch]
        attention_mask_b = [item["attention_mask_b"] for item in batch]


        input_ids_a = pad_sequence(input_ids_a, batch_first=True, padding_value=0.0)
        input_ids_b = pad_sequence(input_ids_b, batch_first=True, padding_value=0.0)
        attention_mask_a = pad_sequence(attention_mask_a, batch_first=True, padding_value=0.0)
        attention_mask_b = pad_sequence(attention_mask_b, batch_first=True, padding_value=0.0)

        return {
            "input_ids_a": input_ids_a,
            "input_ids_b": input_ids_b,
            "attention_mask_a": attention_mask_a,
            "attention_mask_b": attention_mask_b,
        }


def collate_trian_fn(batch):
    # [x1,x2,x3]--->0_(0,1),1_(2,3),2_(4,5)    2i and 2i+1
    max_len = max([len(item["input_ids"]) for item in batch])
    input_ids = torch.as_tensor(torch.zeros((len(batch)*2,max_len)),dtype=torch.long)
    attention_mask = torch.as_tensor(torch.zeros((len(batch)*2,max_len)),dtype=torch.long)
    for i in range(len(batch)):
        input_ids[2*i,:len(batch[i]["input_ids"])] = batch[i]["input_ids"]
        input_ids[2*i+1,:len(batch[i]["input_ids"])] = batch[i]["input_ids"]
        attention_mask[2*i,:len(batch[i]["attention_mask"])] = batch[i]["attention_mask"]
        attention_mask[2*i+1,:len(batch[i]["attention_mask"])] = batch[i]["attention_mask"]
    return {
        "input_ids": input_ids,
        "attention_mask": attention_mask
    }


def collate_dev_fn(batch):
    input_ids_a = [item["input_ids_a"] for item in batch]
    input_ids_b = [item["input_ids_b"] for item in batch]
    attention_mask_a = [item["attention_mask_a"] for item in batch]
    attention_mask_b = [item["attention_mask_b"] for item in batch]
    labels = [item["label"] for item in batch]

    input_ids_a = pad_sequence(input_ids_a,batch_first=True,padding_value=0.0)
    input_ids_b = pad_sequence(input_ids_b,batch_first=True,padding_value=0.0)
    attention_mask_a = pad_sequence(attention_mask_a,batch_first=True,padding_value=0.0)
    attention_mask_b = pad_sequence(attention_mask_b,batch_first=True,padding_value=0.0)
    labels = torch.as_tensor(labels,dtype=torch.long)

    return {
        "input_ids_a": input_ids_a,
        "input_ids_b": input_ids_b,
        "attention_mask_a": attention_mask_a,
        "attention_mask_b": attention_mask_b,
        "labels": labels,
    }


def get_loader():
    tokenizer = BertTokenizer.from_pretrained(CFG.model_path)
    trian_sentence_a, trian_sentence_b, train_labels = read_data(f"{CFG.data_path}\\train.json")
    dev_sentence_a, dev_sentence_b, dev_labels = read_data(f"{CFG.data_path}\\dev.json")
    train_set = SimcseDataSet(trian_sentence_a,trian_sentence_b,train_labels,tokenizer,mode="train")
    dev_set = SimcseDataSet(dev_sentence_a,dev_sentence_b,dev_labels,tokenizer,mode="dev")
    train_loder = DataLoader(train_set,batch_size=CFG.batch_size,collate_fn=collate_trian_fn,shuffle=True)
    dev_loder = DataLoader(dev_set,batch_size=CFG.batch_size,collate_fn=collate_dev_fn,shuffle=True)
    return train_loder,dev_loder


class MeanPoling(nn.Module):
    def __init__(self):
        super().__init__()
        pass
    def forward(self,embed,attention_mask):
        attention_mask_copy = attention_mask.unsqueeze(-1).expand(embed.size()).float()
        embed = embed*attention_mask_copy
        sum_sql_emb = torch.sum(embed,dim=-2)
        sum_sql_attetion = torch.sum(attention_mask_copy,dim=-2)
        sum_sql_attetion = torch.clamp(sum_sql_attetion,min=1e-8)
        return sum_sql_emb/sum_sql_attetion

def cal_loss(sentence_embed,tao=0.05):
    i = torch.arange(0,len(sentence_embed),device=CFG.device)
    y_ture = i+1-(i%2)*2
    out = F.cosine_similarity(sentence_embed.unsqueeze(1),sentence_embed.unsqueeze(0),dim=-1)
    out = out-torch.eye(len(sentence_embed),device=CFG.device)*1e8
    out = out/tao
    return  torch.mean(F.cross_entropy(out,y_ture))


class Simcse(nn.Module):
    def __init__(self):
        super().__init__()
        config = BertConfig.from_pretrained(CFG.model_path)
        config.output_hidden_states=True
        self.bert = BertModel.from_pretrained(CFG.model_path,config=config)
        self.pooling = MeanPoling()

    def forward(self,input_ids,attention_mask,mode="dev"):
        last_hidden_state = self.bert(input_ids,attention_mask).hidden_states[-1]
        sentence_embed = self.pooling(last_hidden_state,attention_mask)
        return SequenceClassifierOutput(logits=sentence_embed,loss=None) if mode=="dev" else SequenceClassifierOutput(logits=None,loss=cal_loss(sentence_embed))


def get_metric(pres,labels):
    return f1_score(labels,pres),accuracy_score(labels,pres),recall_score(labels,pres)

def train_fn(model,train_loader,optimizer,epoch):
    model.train()
    for index, item in tqdm(enumerate(train_loader), total=len(train_loader), desc="单论训练进度:"):
        input_ids = item["input_ids"].to(CFG.device)
        attention_mask = item["attention_mask"].to(CFG.device)
        out = model(input_ids, attention_mask, mode="trian")
        loss = out.loss
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()
        if (index+1)%CFG.print_step == 0 or index== len(train_loader)-1:
            print(f"epoch:{epoch} step:{index} loss:{loss.item():.6f}")


def dev_fn(model,dev_loader,epoch):
    model.eval()
    prediction, labels=[],[]
    with torch.no_grad():
        for index, item in tqdm(enumerate(dev_loader), total=len(dev_loader), desc="单论训练进度:"):
            input_ids_a = item["input_ids_a"].to(CFG.device)
            input_ids_b = item["input_ids_b"].to(CFG.device)
            attention_mask_a = item["attention_mask_a"].to(CFG.device)
            attention_mask_b = item["attention_mask_b"].to(CFG.device)
            label = item["labels"]
            emb_a = model(input_ids_a,attention_mask_a,mode="dev").logits
            emb_b = model(input_ids_b,attention_mask_b,mode="dev").logits
            pre = F.cosine_similarity(emb_a,emb_b,dim=-1)
            pre = (pre>CFG.throshold).long().detach().cpu().numpy()
            label = label.detach().cpu().numpy()
            prediction.extend(pre)
            labels.extend(label)
    f1,acc,rec = get_metric(prediction,labels)
    print(f"epoch:{epoch} f1:{f1:.4f} acc:{acc:.6f} rec:{rec:.4f}")
    return f1,acc,rec


def read_data(path,num=None):
    datas = []
    with open(path,"r",encoding="utf-8") as f:
        for line in f:
            data  = json.loads(line)
            datas.append(data)
        f.close()
    datas = pd.DataFrame(datas)
    sentence_a,sentence_b ,labels  = datas["sentence1"].values,datas["sentence2"].values,datas["label"].values
    assert len(sentence_a) == len(sentence_b) == len(labels)
    return (sentence_a[:num],sentence_b[:num] ,labels[:num]) if num else (sentence_a,sentence_b ,labels)

def train_loop():
    train_loader, dev_loader = get_loader()
    model = Simcse().to(CFG.device)
    optimizer = torch.optim.Adam(model.parameters(), lr=CFG.learn_rate)
    best_acc = 0
    for epoch in range(CFG.epochs):
        print(f"总训练进度:{epoch + 1}/{CFG.epochs}")
        train_fn(model, train_loader, optimizer, epoch)
        f1, acc, rec = dev_fn(model, dev_loader, epoch)
        if acc > best_acc:
            best_acc = acc
            torch.save(model.state_dict(), CFG.save_path)
    print("training endding!!!")


def read_test_data(test_path):
    datas = []
    with open(test_path, "r", encoding="utf-8") as f:
        for line in f:
            data = json.loads(line)
            datas.append(data)
        f.close()
    datas = pd.DataFrame(datas)
    sentence_a, sentence_b = datas["sentence1"].values, datas["sentence2"].values
    assert len(sentence_a) == len(sentence_b)
    return datas, sentence_a, sentence_b



def infer_fn():
    tokenizer = BertTokenizer.from_pretrained(CFG.model_path)

    pd_data, test_sentence_a, test_sentence_b = read_test_data(CFG.test_data_path)
    test_set = TestDataSet(test_sentence_a, test_sentence_b, tokenizer)
    test_loder = DataLoader(test_set, batch_size=CFG.batch_size, collate_fn=test_set.collate_test_fn, shuffle=True)
    model = Simcse().to(CFG.device)
    model.load_state_dict(torch.load(CFG.save_path,map_location="cuda"))

    model.eval()
    prediction= []
    with torch.no_grad():
        for index, item in tqdm(enumerate(test_loder), total=len(test_loder), desc="单论训练进度:"):
            input_ids_a = item["input_ids_a"].to(CFG.device)
            input_ids_b = item["input_ids_b"].to(CFG.device)
            attention_mask_a = item["attention_mask_a"].to(CFG.device)
            attention_mask_b = item["attention_mask_b"].to(CFG.device)
            emb_a = model(input_ids_a, attention_mask_a, mode="dev").logits
            emb_b = model(input_ids_b, attention_mask_b, mode="dev").logits
            pre = F.cosine_similarity(emb_a, emb_b, dim=-1)
            pre = (pre > CFG.throshold).long().detach().cpu().numpy()
            prediction.extend(pre)
    pd_data["label"] = prediction
    pd_data.to_csv(CFG.data_save_path,index=False)

    pass


if __name__ == '__main__':
    seed_everything()
    train_loop()
    infer_fn()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值