高联几何100题


高联难度几何题第一道


调和解法

BECF构成调和四边形
GB、GE、GF、GC构成调和线束
I、B、E、H构成调和点列
∠EFG为直角
FE为BFH的内角平分线

欧式解法

//接下来我们从求证出发,寻求本题的欧式解法
欲证∠BFE=∠HFE
⇔∠DBH=∠DFH
⇔DHFB四点共圆
⇔∠DFB=∠DHB=∠DBH
⇔DB=DH=DC
⇔D是BCH外接圆的圆心
⇔∠BDC=2∠BHC
现在看来我们已经完成了本题证明的关键部分,剩下的就是倒角了:
∠BHC=Π/2-∠BGC
∠BDC=Π-2∠DBC=Π-2∠BGC
得证

该图形结构的一些几何性质
在这里插入图片描述


高联难度几何体第二三道


Pascal解法

我们先来对求证进行一些转化
原命题等价于证明DCEHA五点共圆
等价于证明CH⊥BF
因此,解决该问题的关键就在于如何论证上述垂直关系的成立
事实上,该证明可以有Pascal定理轻松给出
由pascal定理ICGH四点共线
而G是三角形IFB的垂心
∴GH/BF
原命题得证
如果不熟悉Pascal定理,可以尝试下述证法
注意到FDB为直角,发现共角形相似,
我们只需证明∠BGH=∠BFD
而∠BFD=∠CDB
故我们只需证CD=CE=CG
有了第一题的经验我们自然想到证明C是三角形DEG的外心
⇔DCE/2=∠BGE
倒角即可得证
//事实上,我们可以发现该图形结构的许多几何性质
∠DEF=∠HEF
C是三角形DGE的外心

在这里插入图片描述
在这里插入图片描述

第三题事实上只是在第二题的基础上添加了一条割线
由第二题后探索的性质:
⇔∠FHG=∠DBF
⇔∠DHG=∠DCG
⇔DCHG四点共圆
⇔∠CGD=∠CHD
⇔∠CDG=∠CHD
上述两角均等于∠DFB
得证

另外,在本题中的弦不是直径而是一条普通的弦时,取出该弦的中点仍然有类似的公园结论(小蓝本调和那章好像有一个题就是这个)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值