文章目录
一、认识KNN算法
1·什么是KNN算法
KNN全称是k-Nearest Neighbors,意思是K个最近的邻居。
KNN算法从名字上我们就可以很直观地看出它的原理:从所有的训练样本中找出和未知最近的K个样本,将k个样本中出现最多的类别就是赋给未知样本。
图中绿色的点就是我们要预测的那个点,假设K=3。那么KNN算法就会找到与它距离最近的三个点(这里用实线圈出来的点),看看哪种类别多一些,比如这个例子中是红色三角形多一些,新来的绿色点就归类到红三角了。
但是,当K=5的时候,判定就变成不一样了。这次变成蓝色方块多一些,所以新来的绿点被归类成蓝色方块。从这个例子中,我们就能看得出K的取值是很重要的。
明白了大概原理后,我们就来说一说细节的东西吧,主要有两个,K值的选取和点距离的计算。
2·距离计算
要度量空间中点距离的话,有好几种度量方式,比如常见的曼哈顿距离计算,欧式距离计算等等。不过通常KNN算法中使用的是欧式距离。
3.k值的选择
K值选择是KNN算法的关键,K值选择对近邻算法的结果有重大影响
K值的具体含义:在决策时通过依据测试样本的K个最近邻"数据样本"做决策判断.
(实际应用)
K值一般取较小值,通常采用交叉验证法来选取最优K值,也就是比较不同的K值时的交叉验证平均误差,选择平均误差最小的那个K值.
可以理解为对K值的选择就是对训练模型中参数的选择,交叉验证法就可以理解为损失函数
二、算法实现
1·电影类别分类
代码实现
from numpy import *
import operator
from os import listdir
def createDataSet():
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group, labels
运行结果
2·改进约会网站的配对效果
2·1代码实现
def classify(inX, dataset, labels, k):
"""
inX 是输入的测试样本,是一个[x, y]样式的
dataset 是训练样本集
labels 是训练样本标签
k 是top k最相近的
"""
# shape返回矩阵的[行数,列数],
# 那么shape[0]获取数据集的行数,
# 行数就是样本的数量
dataSetSize = dataset.shape[0]
"""
下面的求距离过程就是按照欧氏距离的公式计算的。
即 根号(x^2+y^2)
"""
# tile属于numpy模块下边的函数
# tile(A, reps)返回一个shape=reps的矩阵,矩阵的每个元素是A
# 比如 A=[0,1,2] 那么,tile(A, 2)= [0, 1, 2, 0, 1, 2]
# tile(A,(2,2)) = [[0, 1, 2, 0, 1, 2],
# [0, 1, 2, 0, 1, 2]]
# tile(A,(2,1,2)) = [[[0, 1, 2, 0, 1, 2]],
# [[0, 1, 2, 0, 1, 2]]]
# 上边那个结果的分开理解就是:
# 最外层是2个元素,即最外边的[]中包含2个元素,类似于[C,D],而此处的C=D,因为是复制出来的
# 然后C包含1个元素,即C=[E],同理D=[E]
# 最后E包含2个元素,即E=[F,G],此处F=G,因为是复制出来的
# F就是A了,基础元素
# 综合起来就是(2,1,2)= [C, C] = [[E], [E]] = [[[F, F]], [[F, F]]] = [[[A, A]], [[A, A]]]
# 这个地方就是为了把输入的测试样本扩展为和dataset的shape一样,然后就可以直接做矩阵减法了。
# 比如,dataset有4个样本,就是4*2的矩阵,输入测试样本肯定是一个了,就是1*2,为了计算输入样本与训练样本的距离
# 那么,需要对这个数据进行作差。这是一次比较,因为训练样本有n个,那么就要进行n次比较;
# 为了方便计算,把输入样本复制n次,然后直接与训练样本作矩阵差运算,就可以一次性比较了n个样本。
# 比如inX = [0,1],dataset就用函数返回的结果,那么
# tile(inX, (4,1))= [[ 0.0, 1.0],
# [ 0.0, 1.0],