机器学习实验一(深入探究KNN算法)

本文详细介绍了KNN算法,包括其基本原理、距离计算方法以及k值选择的重要性。通过电影类别分类、约会网站配对效果改进和手写识别系统的实例,展示了KNN算法的实现过程,强调了K值选择对结果的影响,并提供了代码实现和运行结果。最后,文章总结了实验中的关键点和遇到的问题。
摘要由CSDN通过智能技术生成


一、认识KNN算法

1·什么是KNN算法

KNN全称是k-Nearest Neighbors,意思是K个最近的邻居。
KNN算法从名字上我们就可以很直观地看出它的原理:从所有的训练样本中找出和未知最近的K个样本,将k个样本中出现最多的类别就是赋给未知样本。
在这里插入图片描述

图中绿色的点就是我们要预测的那个点,假设K=3。那么KNN算法就会找到与它距离最近的三个点(这里用实线圈出来的点),看看哪种类别多一些,比如这个例子中是红色三角形多一些,新来的绿色点就归类到红三角了。
但是,当K=5的时候,判定就变成不一样了。这次变成蓝色方块多一些,所以新来的绿点被归类成蓝色方块。从这个例子中,我们就能看得出K的取值是很重要的。

明白了大概原理后,我们就来说一说细节的东西吧,主要有两个,K值的选取和点距离的计算。

2·距离计算

要度量空间中点距离的话,有好几种度量方式,比如常见的曼哈顿距离计算,欧式距离计算等等。不过通常KNN算法中使用的是欧式距离。
在这里插入图片描述

3.k值的选择

K值选择是KNN算法的关键,K值选择对近邻算法的结果有重大影响
K值的具体含义:在决策时通过依据测试样本的K个最近邻"数据样本"做决策判断.
(实际应用)
 K值一般取较小值,通常采用交叉验证法来选取最优K值,也就是比较不同的K值时的交叉验证平均误差,选择平均误差最小的那个K值.
 可以理解为对K值的选择就是对训练模型中参数的选择,交叉验证法就可以理解为损失函数

二、算法实现

1·电影类别分类

代码实现

from numpy import *
import operator
from os import listdir



def createDataSet():
    group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels = ['A','A','B','B']
    return group, labels


运行结果

在这里插入图片描述

2·改进约会网站的配对效果

2·1代码实现

def classify(inX, dataset, labels, k):
    """
    inX 是输入的测试样本,是一个[x, y]样式的
    dataset 是训练样本集
    labels 是训练样本标签
    k 是top k最相近的
    """
    # shape返回矩阵的[行数,列数],
    # 那么shape[0]获取数据集的行数,
    # 行数就是样本的数量
    dataSetSize = dataset.shape[0]

    """
    下面的求距离过程就是按照欧氏距离的公式计算的。
    即 根号(x^2+y^2)
    """
    # tile属于numpy模块下边的函数
    # tile(A, reps)返回一个shape=reps的矩阵,矩阵的每个元素是A
    # 比如 A=[0,1,2] 那么,tile(A, 2)= [0, 1, 2, 0, 1, 2]
    # tile(A,(2,2)) = [[0, 1, 2, 0, 1, 2],
    #                  [0, 1, 2, 0, 1, 2]]
    # tile(A,(2,1,2)) = [[[0, 1, 2, 0, 1, 2]],
    #                    [[0, 1, 2, 0, 1, 2]]]
    # 上边那个结果的分开理解就是:
    # 最外层是2个元素,即最外边的[]中包含2个元素,类似于[C,D],而此处的C=D,因为是复制出来的
    # 然后C包含1个元素,即C=[E],同理D=[E]
    # 最后E包含2个元素,即E=[F,G],此处F=G,因为是复制出来的
    # F就是A了,基础元素
    # 综合起来就是(2,1,2)= [C, C] = [[E], [E]] = [[[F, F]], [[F, F]]] = [[[A, A]], [[A, A]]]
    # 这个地方就是为了把输入的测试样本扩展为和dataset的shape一样,然后就可以直接做矩阵减法了。
    # 比如,dataset有4个样本,就是4*2的矩阵,输入测试样本肯定是一个了,就是1*2,为了计算输入样本与训练样本的距离
    # 那么,需要对这个数据进行作差。这是一次比较,因为训练样本有n个,那么就要进行n次比较;
    # 为了方便计算,把输入样本复制n次,然后直接与训练样本作矩阵差运算,就可以一次性比较了n个样本。
    # 比如inX = [0,1],dataset就用函数返回的结果,那么
    # tile(inX, (4,1))= [[ 0.0, 1.0],
    #                    [ 0.0, 1.0],
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值