如何对回归方程进行统计(显著性)检验?

1 对回归系数的检验

对于回归系数一般采用 t 检验,即假设系数 β 等于0。

2 对回归方程方差的检验

方差一般采用F检验,其将平方和公式进行分解,得到SSRSSE

在这里插入图片描述
在这里插入图片描述
总平方和反映因变量y波动程度或称不确定性,其可以分解为回归平方SSR和和残差平方和SSE,其中SSR是由回归方程确定,是由自变量x的波动引起的,SSE不能由自变量解释的波动,是由x之外的未加控制的因素引起的。

因此,SST中,能够由自变量解释的部分为SSR不能由自变量解释的部分为SSESSR越大回归效果越好,因此构建的F检验统计量为:

在这里插入图片描述

3 对回归方程线性关系的检验

因为变量y和变量x之间存在线性关系,所以可以用相关系数来检验回归方程的显著性。

在这里插入图片描述

相关系数的直观意义如下:

在这里插入图片描述

相关系数的缺点:其接近1的程度与数据组数n有关。当n很小时,其绝对值容易接近1n较大时,绝对值容易偏小。当n=2时,r的绝对值为1。因此在样本量n较小时,不能仅凭相关系数较大就说明xy有密切的线性关系。

在这里插入图片描述
在这里插入图片描述

除了查表,也可以对相关系数进行t检验

在这里插入图片描述
注意,相关系数的t检验,只是表示相关系数显著不为0不能表示相关程度的强弱

r一般表示样本相关系数,总体样本相关系数一般用ρ表示:

在这里插入图片描述

4 t检验、F检验、r显著性检验的关系

对于一元线性回归,三者一致;对于多元线性回归,三者不一致。

在多元回归中,F检验显著,说明y对所有自变量的整体的线性回归效果是显著的,但不等于y对每个自变量x的回归效果都显著。反之,某个或几个x的系数不显著,回归方程的F检验仍有可能是显著的。

一元线性回归分析是研究一个自变量对因变量影响的统计方法,在实际操作中,我们通常使用SPSS等统计软件来完成相关分析。在SPSS中进行一元线性回归分析,首先需要导入数据并确定因变量和自变量。以下为详细步骤: 参考资源链接:[一元线性回归的显著性检验与应用](https://wenku.csdn.net/doc/34u2gtrybv?spm=1055.2569.3001.10343) 1. 数据准备:确保你的数据已经被正确地输入SPSS中,并且已经检查了数据的完整性。 2. 描述性统计:在进行回归分析之前,先进行描述性统计分析,这有助于了解数据的基本分布情况。 3. 散点图绘制:通过绘制散点图,直观地观察自变量和因变量之间是否存在线性关系。 4. 回归分析:选择‘分析’->‘回归’->‘线性’,在弹出的对话框中设置因变量和自变量,然后点击‘确定’执行回归分析。 5. 结果解读:SPSS会输出包括回归方程系数、R平方值、F统计量等在内的多种统计量。特别地,我们需要关注的是回归方程显著性检验结果,即Sig值。如果Sig值小于显著性水平(通常是0.05),则表明至少有一个回归系数是显著的,意味着该自变量对因变量有显著的影响。 在SPSS中,Sig值是在回归系数下方显示的小数,用于检验零假设(即该自变量的回归系数等于零)。如果Sig值小于0.05,我们通常会拒绝零假设,接受备择假设,即认为该自变量对因变量有显著的线性关系。 为了深入理解一元线性回归和显著性检验,推荐查看《一元线性回归的显著性检验与应用》这本书。它提供了更多的实际案例和理论解释,帮助你不仅仅是完成回归分析,而且能够深入理解分析结果的意义,从而更准确地进行数据分析和决策。 参考资源链接:[一元线性回归的显著性检验与应用](https://wenku.csdn.net/doc/34u2gtrybv?spm=1055.2569.3001.10343)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值