目录
1. 基本概念
- 概率:描述事件发生可能性的度量,通常用于量化事件发生的可能性大小。在统计学和概率论中,概率被定义为某个事件发生的可能性,它通常取值在0到1之间。
- 事件:有概率可言的任何事情。
- 穷举事件:P(a)+P(b)=1:穷举事件的概率之和等于1
- 交集 - 与
- 并集 - 或
- 全概率公式 :
- 贝叶斯定理 :
- 独立事件:如果事件 A 的发生与事件 B 的发生没有关联,那么这两个事件就是独立的。
2. 概率
2.1 概念
概率是描述事件发生可能性的度量,通常用于量化事件发生的可能性大小。在统计学和概率论中,概率被定义为某个事件发生的可能性,它通常取值在0到1之间,其中0表示不可能发生,1表示一定发生。
事件:统计学用“事件”一词表示有概率可言的任何事情,换句话说,事件就是人们能指出其发生可能性的任何事情。
概率的量度尺度是0-1。如果某件事不可能发生,则其概率为0;如果某件事肯定会发生,则其概率为1。大多数时候,所面对的都是介于0和1之间的概率。
概率只是对事件发生可能性的一种表达,概率并非担保。概率仅仅指出长期趋势。
无论事件多么不可能发生,只要不是完全不可能发生,该事件就仍然可能发生。
2.2 计算
2.3 概率空间
概率空间(Probability Space)是概率论中描述随机试验的数学结构,由三个要素组成:样本空间、事件和概率度量。
-
样本空间(Sample Space):样本空间是随机试验的所有可能结果的集合,通常用 �S 表示。样本空间中的每个元素都是一个基本事件(Elementary Event),表示随机试验的一个可能结果。
-
事件(Event):事件是样本空间的子集,表示随机试验中可能发生的某些结果的集合。事件可以是单个结果,也可以是多个结果的组合。通常用 A、B 等字母表示事件。
-
概率度量(Probability