深入浅出统计学(四)— 概率计算

本文详细介绍了概率的基本概念,包括概率的定义、计算方法,以及概率空间、韦恩图、对立事件、互斥事件、相交事件、交集-与、并集-或、条件概率、概率树、全概率公式、贝叶斯定理和独立事件等核心概念。此外,还涉及了线性变换和观测值期望方差等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. 基本概念

2. 概率

2.1 概念

2.2 计算

2.3 概率空间

3. 韦恩图

4.对立事件

5. 互斥事件和相交事件

5.1 互斥事件

5.2 相交事件

6. 交集 - 与  并集 - 或

6.1 交集 - 与 

6.2 并集 - 或

7. 条件概率

8. 概率树

9. 全概率公式

10. 贝叶斯定理

11.独立事件


1. 基本概念

  • 概率:描述事件发生可能性的度量,通常用于量化事件发生的可能性大小。在统计学和概率论中,概率被定义为某个事件发生的可能性,它通常取值在0到1之间。
  • 事件:有概率可言的任何事情。
  • 穷举事件:P(a)+P(b)=1:穷举事件的概率之和等于1
  • 交集 - 与 
  • 并集 - 或
  • 全概率公式 :
  • 贝叶斯定理 :
  • 独立事件:如果事件 A 的发生与事件 B 的发生没有关联,那么这两个事件就是独立的。

2. 概率

2.1 概念

概率是描述事件发生可能性的度量,通常用于量化事件发生的可能性大小。在统计学和概率论中,概率被定义为某个事件发生的可能性,它通常取值在0到1之间,其中0表示不可能发生,1表示一定发生。

事件:统计学用“事件”一词表示有概率可言的任何事情,换句话说,事件就是人们能指出其发生可能性的任何事情。
概率的量度尺度是0-1。如果某件事不可能发生,则其概率为0;如果某件事肯定会发生,则其概率为1。大多数时候,所面对的都是介于0和1之间的概率。

概率只是对事件发生可能性的一种表达,概率并非担保。概率仅仅指出长期趋势。
无论事件多么不可能发生,只要不是完全不可能发生,该事件就仍然可能发生。

2.2 计算

2.3 概率空间

概率空间(Probability Space)是概率论中描述随机试验的数学结构,由三个要素组成:样本空间、事件和概率度量。

  1. 样本空间(Sample Space):样本空间是随机试验的所有可能结果的集合,通常用 �S 表示。样本空间中的每个元素都是一个基本事件(Elementary Event),表示随机试验的一个可能结果。

  2. 事件(Event):事件是样本空间的子集,表示随机试验中可能发生的某些结果的集合。事件可以是单个结果,也可以是多个结果的组合。通常用 A、B 等字母表示事件。

  3. 概率度量(Probability

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值