信息论复习二:离散信道及其容量

本文深入探讨离散无记忆信道,包括信道分类、转移概率矩阵和典型信道如BSC及二元删除信道。重点讨论信息熵速率、接收熵速率和信道容量的概念,强调信道容量只与信道本身性质相关。同时,解析无损无遭、有噪无损和无噪有损信道的信道容量特性,并介绍对称信道的计算。最后,阐述一般信道容量计算和多符号离散信道的容量特性,如N次扩展信道和独立并联信道的容量公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这节里面,我们复习离散信道及其容量!!!

首先了解信道的分类和信道的转移概率矩阵,主要是研究无记忆信道。

紧接着复习两个典型信道BSC和二元删除信道。

接下来就是重要概念:信息熵速率即信源熵乘以单位时间发送的符号数;

接收熵速率即平均互信息乘以信道单位时间内传输的符号数;

信息传输率为平均互信息;

信道容量为最大的信息传输率,但信道容量不和信源分布有关,只和信道本身有关,也就是说,信道一旦固定,信道容量就固定了,只是可以调节信源的分布使得平均互信息最大,这个最大值和信道容量的值相等。

接下来就是信道容量的另外一个形式,单位时间的信道容量。

还有就是三个特殊信道的概念和计算。

无损无遭信道:输入输出一一对应,所以没有噪声熵和损失熵,即信道容量为H(X)或者H(Y)的最大值;

有噪无损信道:一个输入对应一个或多个输出,损失熵为0,即信道容量为H(X)的最大值;

无噪有损信道:一个输出对应一个或多个输入,噪声熵为0,即信道容量为H(Y)的最大值。

 接下来就是对称信道,复习对称信道的判断和计算,对称信道的容量等于输出符号熵减去信道转移概率矩阵第一行的熵。

 最后就是一般的信道容量计算以及多符号离散信道容量。

对于离散无记忆信道的N次扩展信道容量等于N*单信道容量

独立并联信道容量等于N个信道容量的加和。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

菜菜菜~~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值