普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现;并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法。 ——百度百科
一、基本思想
(1)输入:一个加权连通图,顶点集V,边集E;
(2)初始化:可选择任意结点x为起始点,将起始点x加入顶点集V1 = {x},边集为空E1 = { };
(3)重复下列操作,直到所有顶点全部加入顶点集V1中,即V1 = V:
a. 在集合E中寻找权值最小的边<u, v>,其中结点u在集合V1中,而结点v不在集合V1中,并且v∈V(如果存在多条符合要求的边,任选其一即可);
b. 将结点v加入顶点集V1中,将边<u,v>加入边集E1中;
(4)输出:通过顶点集V1与边集E1打印最小生成树及其他相关操作。
二、时间复杂度
使用邻接矩阵存储图信息时间复杂度为:O(n^2)
使用邻接表存储图信息时间复杂度为:O(m*logn)
其中n为顶点数,m为图的边数。
三、图解
四、模板
prim算法需要用到两个主要数组:
int lowcost[N]; //lowcost[i]表示i到集合最近的距离
int mst[N]; //mst[i]表示对应i为终点的边的起点
int Prim(){
fill(lowcost, lowcost + N, INT_MAX);
fill(mst, mst + N, 1);
for(int i = 2; i <= n; i++){
lowcost[i] = v[1][i];
}
int u, minn, sum = 0;
for(int i = 2; i <= n; i++){
minn = INT_MAX;
for(int j = 2; j <= n; j++){
if(lowcost[j] != 0 && minn > lowcost[j]){
minn = lowcost[j];
u = j;
}
}
sum += minn;
lowcost[u] = 0;
for(int k = 2; k <= n; k++){
if(v[u][k] < lowcost[k]){
lowcost[k] = v[u][k];
mst[k] = u;
}
}
}
return sum;
}
五、例题
1、模板题 洛谷P3366 【模板】最小生成树
AC代码:
#include<iostream>
#include<climits>
#include<algorithm>
using namespace std;
const int N = 5010;
int n, m;
int v[N][N];
int lowcost[N];//存储距离集合最近的距离
int mst[N];
int Prim(){
fill(lowcost, lowcost + N, INT_MAX);
fill(mst, mst + N, 1);
for(int i = 2; i <= n; i++){
lowcost[i] = v[1][i];
}
int minn, u, sum = 0;
for(int j = 2; j <= n; j++){
minn = INT_MAX;
for(int i = 2; i <= n; i++){
if(lowcost[i] != 0 && minn > lowcost[i]){
minn = lowcost[i];
u = i;
}
}
sum += minn;
lowcost[u] = 0;
for(int i = 2; i <= n; i++){
if(lowcost[i] > v[u][i]){
lowcost[i] = v[u][i];
mst[i] = u;
}
}
}
return sum;
}
int main(){
fill(v[0], v[0] + N*N, INT_MAX);
cin >> n >> m;
for(int i = 1; i <= m; i++){
int a, b, c;
cin >> a >> b >> c;
v[a][b] = v[b][a] = min(v[a][b], c);
}
int ans = Prim();
cout << ans << endl;
return 0;
}